<u> Leadtrend</u>

LD7268A

3/10/2005

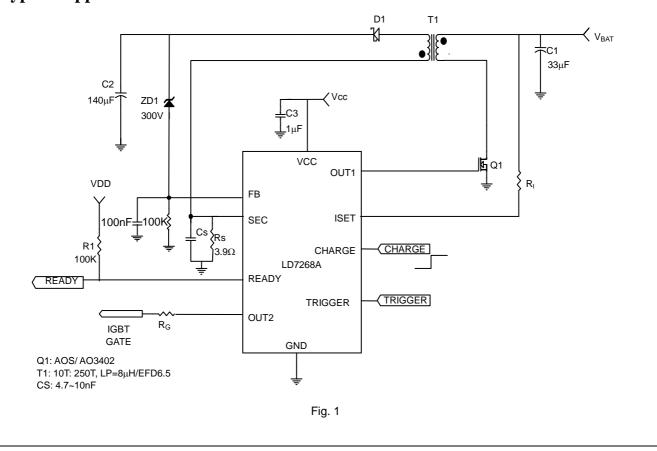
Photoflash Capacitor Charger for DSC

REV: 00

General Description

The LD7268A is an ideal charge control IC for flash units with internal soft start, adjustable charging current and output voltage. It provides a proprietary charging algorithm, which charges photoflash capacitor quickly and efficiently. The LD7268A could operate for constant charging current mode or the mode with lowering the charging current at lower battery voltage. As well, a built-in totem pole IGBT driver can drive IGBT quickly and save the board space.

The LD7268A is available in a space-saving MSOP-10 package and is ideal for DSC flash unit.

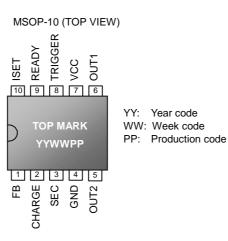

Features

- Adjustable Charging Current
- Adjustable Output Voltage
- 1.8V~5V Battery Voltage Range
- Internal Soft Start
- Tiny Transformer
- Totem-Pole IGBT Driver

Applications

- DSC Flash Unit
- Film Camera Flash Unit

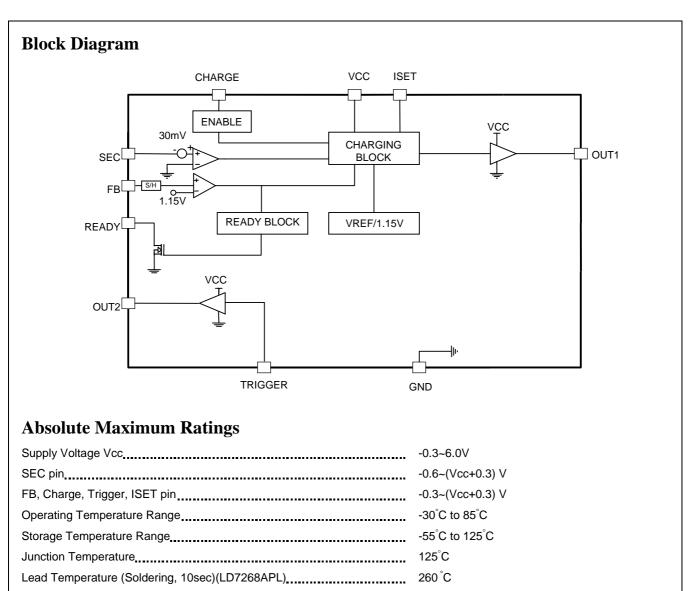
† Patent pending



Typical Application

Leadtrend Technology Corporation LD7268A-DS-00 March 2005

Pin Configuration


Ordering Information

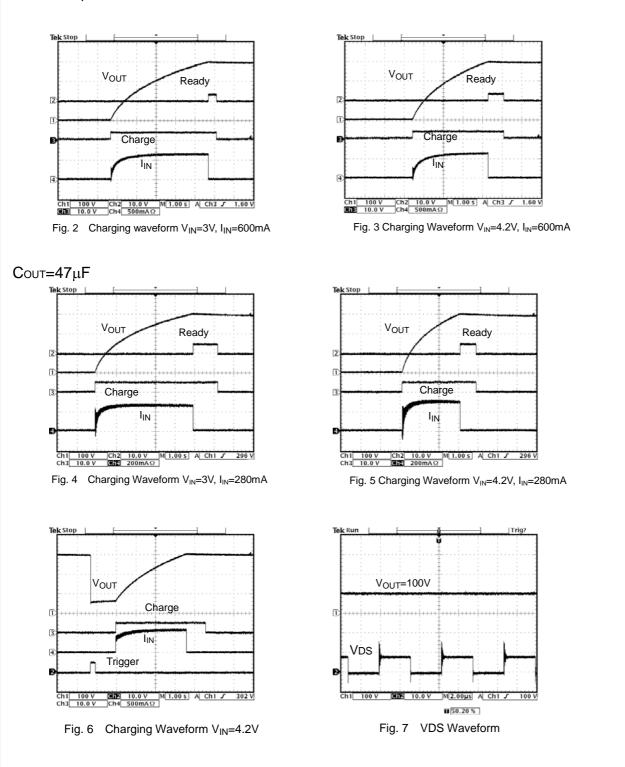
Part number	Package	Top Mark	Shipping	
LD7268APL	MSOP-10	7000 4 DI	0500 /tone 8 real	
	(PB FREE)	7268APL	2500 /tape & reel	

Pin Descriptions

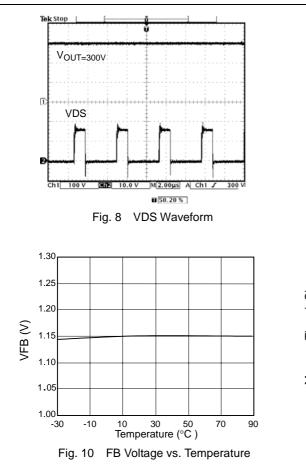
PIN	NAME	FUNCTION	
1	FB	Output voltage feedback	
2	CHARGE	Charging on/off control pin. High=enable low=disable	
3	SEC	Secondary winding pin	
4	GND	IC GND	
5	OUT2	Totem-pole output (IGBT driver)	
6	OUT1	Totem-pole output (MOS driver)	
7	VCC	Input power of IC	
8	TRIGGER	Trigger on/off control pin. High=enable low=disable	
9	READY	Charge ready open drain output.	
10	ISET	Adjust charging current with R to VBAT.	

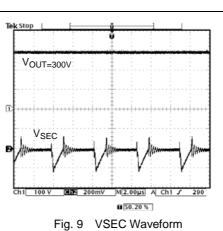
stresses beyond the ratings specified in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

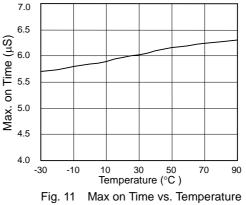
Electrical Characteristics


(T_A = +25°C unless otherwise stated, V_{CC}=3.3V)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Power					
Operating Voltage V _{CC}		2.2		5.5	V
Shutdown Current I _{CC}	Charge=Off, Trigger=Off			1	μΑ
Nominal Supply Current	V _{CC} =3.3V, D=50%		0.8		mA
FB			•		
Reference Voltage			1.15		V
Reference Voltage Tolerance				1	%
MOS Driver			•		
Rising Time	V _{CC} =3.3V, C _L =1nF		40		nS
Falling Time	V _{CC} =3.3V, C _L =1nF		40		nS
IGBT Driver		•			
Output ON resistor	V _{CC} =3.3V		4	6	Ω
Output OFF resistor	V _{CC} =3.3V		6	9	Ω
Rising Time	V _{CC} =3.3V, C _L =3.9nF		70		nS
Falling Time	V _{CC} =3.3V, C _L =3.9nF		100		nS
ON/OFF		•			
T	Enable	1.4			V
Trigger On/Off	Disable			0.6	V
o) o /o//	Enable	1.4			V
Charge On/Off	Disable			0.6	V
Impedance to GND					
Charge Pin to GND			100K		Ω
Trigger Pin to GND			100K		Ω
Others					
Max Turn On Time	Ri open		6		μS
Max Turn On Time Tolerance				6.6	%
SEC Trip Voltage			30		mV
Propagation Delay	(Trigger=High) delay to OUT2		60		nS




Typical Performance Characteristics


Cουτ=140μ**F**

Function Description

Constant Charging Current

The LD7268A provides the solution of constant charging current for the lithium battery.

Just adjust R_I to achieve the desired peak primary charging current.

$$R_I \approx 51 L_P \times I_P \quad K\Omega$$

L_P: primary inductance (µH)

I_P: desired peak primary current (A)

Ex: Desired I_P is 1.6A, L_P =8 $\mu H,$ then R_I =650K/1%

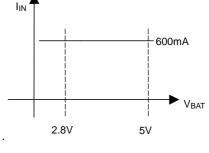


Fig. 12

Lower Charging Current at Low Battery Voltage

Note that the peak primary current must be less than the saturation current of transformer otherwise the transformer will be saturated.

Fig. 12 shows the example of this application

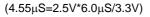
The LD7268A could operate at the mode with lowering the charging current at lower battery voltage, which is intended to use for 2AA battery. It provides a proprietary piecewise linearly charging current control to keep constant charging current at higher voltage and linearly lower charging current

<u> Leadtrend</u>

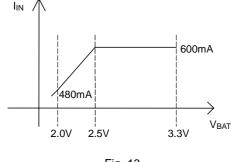
LD7268A

at lower battery voltage.

The Fig. 13 shows an example of the LD7268A to achieve this application.


(1) If we want to set the cut off voltage at $V_{\text{BAT}}\!\!=\!\!2.5\text{V}\!,$ then

Choose R_I according to the following equation.


 $R_{\textit{I}} = 330 \times \textit{Vcutoff} ~~\text{K}\Omega$

For this example, $~R_{I}=330\times2.5K\Omega=825$ K Ω

(2) The max on time of LD7268A is 6.0 $\mu S,$ then the on time of V_{BAT}=3.3V is about 4.55 μS

(3) The ON time of V_{BAT} <2.5V keeps at 6.0μ S.

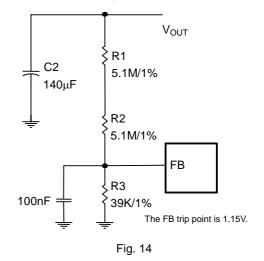
Acceptable Minimum Ri

The acceptable minimum Ri for the LD7268A is

$$Ri\min \ge 28 \times \left(\frac{Vout}{N} + Vbat\max\right) K\Omega$$

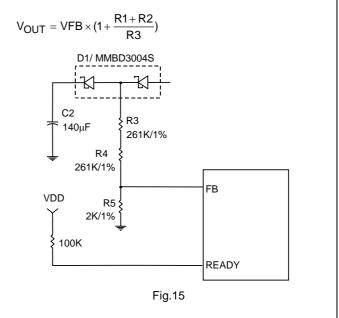
N: turn ration of transformer

Ex: N=25, V_{OUT}=300V, Vbatmax=4.2V


→Ri>450KΩ

Please always keep RI value higher than the minimums described above to remain the proper operation in the whole battery range. If the RI value can't meet the requirement in charging application, please use a larger Lp to adjust the input current lower.

Transformer Selection


A carefully chosen transformer could result in best performance of the LD7268A. Usually, it's suitable to choose a transformer of $L_P=8-22\mu H$ for V_{BAT} in the voltage range of 1.8V~5V. Also, the turn ratio of the transformer should be considered. Choose it according to the VDS rating of Q1. For example, if V_{DS} rating of Q1 is 30V, then the suitable turn ratio is about N=20~25.

Adjust Output Voltage

The LD7268A could sense output voltage by using an output resistor divider or a high voltage zener diode.

Fig.14 shows the application circuit of resistor divider.

<u> Leadtrend</u>

A resistor divider can be connected to the central of the rectifying diode to eliminate the leakage current in the application of Fig. 14 after the charging completes. The Fig. 15 shows the application circuit.

$$V_{OUT} = V_{FB} \times (1 + \frac{R3 + R4}{R5})$$

Choose the lower resistor (R5 in Fig. 15) connected form FB to GND, less than 2K ohm. Larger resistor combined with parasitic capacitance at FB pin would affect the Vout detection accuracy.

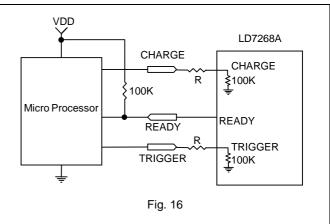
Interface

CHARGE, READY and TRIGGER can be easily interfaced to a microprocessor.

The CHARGE pin is the ON/OFF control of charging circuit.

High=enable, Low =disable

The READY pin is an indicator of charging and output voltage state.


- High= the charging is completed and CHARGE pin is high
- Low= otherwise

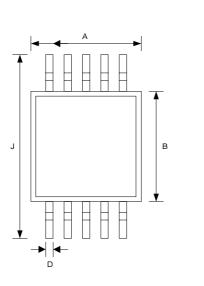
The TRIGGER pin is the ON/OFF control of the strobe to generate a light pulse.

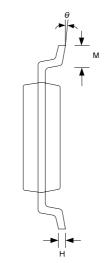
High=enable, Low =disable

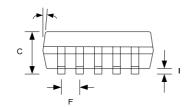
Because the impedance of CHARGE pin and TRIGGER pin to GND is about $100K\Omega$. Thus, the user could use a resistor to form as a divider to increase the enable and disable level.

Note that the trigger function is only active while the CHARGE pin goes low.

Layout Consideration


- The layout of this IC should be far away from any high voltage nodes or paths.
- 2. Keep the bypass capacitor $1\mu F$ very close to IC.
- 3. Keep output voltage feed back network, R_I, R_S and C_S very close to the IC.
- The signal ground plane of FB and the SEC pin should be connected to the power ground with a via or only one point to minimize the effect of power ground currents.
- The Switching node, such as OUT1, should be kept as small as possible and routed away from FB and SEC pin.
- The PCB traces carrying discontinuous currents and any high current path should be made as short and wide as possible.
- Please refer to the EV kit for the example of the PCB layout.


LD7268A



Package Information

MSOP-10

Symbols	Dimensions in Millimeters		Dimensions in Inch		
	MIN	МАХ	MIN	МАХ	
A	2.896	3.099	0.114	0.122	
В	2.896	3.099	0.114	0.122	
С	0.813	1.219	0.032	0.048	
D	0.152	0.305	0.006	0.012	
F	0.470	0.530	0.018	0.020	
н	0.127	0.229	0.005	0.009	
I	0.051	0.152	0.002	0.006	
J	4.699	5.105	0.185	0.201	
М	0.406	0.660	0.016	0.026	
θ	0°	6°	0°	6°	

Important Notice

Leadtrend Technology Corp. reserves the right to make changes or corrections to its products at any time without notice. Customers should verify the datasheets are current and complete before placing order.