Small Package, High Performance, Asynchronies Boost for 10 WLED Driver

General Description

The RT9293 is a high frequency, asynchronous boost converter. The internal MOSFET can support up to 10 White LEDs for backlighting and OLED power application, and the internal soft start function can reduce the inrush current. The device operates with $1-\mathrm{MHz}$ fixed switching frequency to allow small external components and to simplify possible EMI problems. Moreover, the IC comes with 46 V over voltage protection to allow inexpensive and small-output capacitors with lower voltage ratings. The LED current is initially set with the external sense resistor $R_{\text {SET }}$. The RT9293 is available in the tiny package type TSOT-23-6 and WDFN-8L 2×2 packages to provide the best solution for PCB space saving and total BOM cost.

Ordering Information RT9293 ロロ
 Package Type J6:TSOT-23-6 QW : WDFN-8L 2x2 (W-Type)
 -Operating Temperature Range G: Green (Halogen Free with Commercial Standard)
 Feedback Voltage Reference
 A : 104 mV
 B: 300 mV
 C : 200 mV

Note :

Richtek Green products are :
\}RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
\}Suitable for use in SnPb or Pb -free soldering processes. \}100\% matte tin (Sn) plating.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area, otherwise visit our website for detail.

Features

। VIN Operating Range : 2.5V to 5.5V
Internal Power N-MOSFET Switch
Wide Range for PWM Dimming (100 Hz to 200 kHz)
Minimize the External Component Counts
Internal Soft Start
Internal Compensation
Under Voltage Protection
Over Voltage Protection
Over Temperature Protection
Small TSOT-23-6 and 8-Lead WDFN Packages
RoHS Compliant and Halogen Free

Applications

, Cellular Phones
, Digital Cameras
, PDAs and Smart Phones and MP3 and OLED.
, Probable Instruments

Pin Configurations

(TOP VIEW)

TSOT-23-6

WDFN-8L 2×2
Note : There is no pin1 indicator on top mark for TSOT-23-6 type, and pin 1 will be lower left pin when reading top mark from left to right.

Typical Application Circuit

Functional Pin Description

Pin No.		Pin Name	
RT9293 \square GJ6	RT9293 \square GQW		
1	8	LX	Switching Pin.
2	1,5, Exposed pad (9)	GND	Ground Pin. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
3	6	FB	Feed Back Pin, put a resistor to GND to setting the current.
4	4	EN	Chip Enable (Active High).
5	3	VOUT	Output Voltage Pin.
6	2	VIN	Input Supply.
--	7	NC	No Internal Condition.

Function Block Diagram

Absolute Maximum Ratings (Note 1)
, Supply Input Voltage, $\mathrm{V}_{\mathbb{N}}$ -0.3 V to 6 V
, Switching Pin, LX -0.3 V to 50 V
, VOUT -0.3 V to 46 V
, Other Pins -0.3 V to 6 V
। Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$TSOT-23-60.392W
WDFN-8L2x2 0.606W
। Package Thermal Resistance (Note 3)
TSOT-23-6, θ_{JA} $255^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-8L2x2, $\theta_{\mathrm{JA}}-$ $165^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-8L2x2, θ_{Jc} $20^{\circ} \mathrm{C} / \mathrm{W}$
। Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
। Junction Temperature $150^{\circ} \mathrm{C}$
, Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Recommended Operating Conditions (Note 2)
। Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
। Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}, \mathrm{C}_{\text {IN }}=2.2 \mathrm{uF}, \mathrm{C}_{\text {OUT }}=0.47 \mathrm{uF}$, $\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~L}=22 \mathrm{uH}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Conditions	Min	Typ	Max	Unit
Input Voltage		VIN		2.5	--	5.5	V
Under Voltage Lock Out		VUVLO		2	2.2	2.45	V
UVLO Hystersis				-	0.1	--	V
Quiescent Current		lQ	FB $=1.5 \mathrm{~V}$, No Switching	-	400	600	uA
Supply Current		I_{N}	$\mathrm{FB}=0 \mathrm{~V}$, Switching	-	1	2	mA
Shutdown Current		ISHDN	$\mathrm{V}_{\mathrm{EN}}<0.4 \mathrm{~V}$	-	1	4	uA
Line Regulation			$\mathrm{V}_{\text {IN }}=3$ to 4.3 V	-	1	--	\%
Load Regulation			1 mA to 20 mA	-	1	--	\%
Operation Frequency		fosc		0.75	1	1.25	MHz
Maximum Duty Cycle				90	92	--	\%
Clock Rate				0.1	--	200	kHz
Feedback Reference Voltage	RT9293A	Vref		94	104	114	mV
	RT9293B			285	300	315	
	RT9293C			190	200	210	

To be continued

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
On Resistance	RDS(ON)		--	0.7	1.2	Ω
EN Threshold	Logic-High Voltage	V_{IH}		1.4	--	--
	Logic-Low Voltage	V_{IL}		--	--	0.5
	I_{IH}		--	1	--	V
EN Hystersis			--	0.1	--	V
Over-Voltage Threshold	$\mathrm{V}_{\text {OVP }}$		42	46	50	V
Over-Current Threshold	$\mathrm{I}_{\text {OCP }}$		1	1.2	--	A
OTP	TOTP		--	160	--	${ }^{\circ} \mathrm{C}$
OTP Hystersis		--	30	--	${ }^{\circ} \mathrm{C}$	
Shutdown Delay		--	20	--	ms	

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. The device is not guaranteed to function outside its operating conditions.
Note 3. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. The case point of θ_{Jc} is on the expose pad for the WDFN package.

Typical Operating Characteristics

Output Voltage vs. Output Current

Frequency vs. Input Voltage

Efficiency vs. Input Voltage

Quiescent Current vs. Input Voltage

Frequency vs. Temperature

V_{FB} vs. Output Current

LED Current vs. Duty

$V_{F B}$ vs. Temperature

Enable Voltage vs. Input Voltage

Power On from EN

Applications Information

LED Current Setting

The loop of Boost structure will keep the FB pin voltage equal to the reference voltage $\mathrm{V}_{\text {REF }}$. Therefore, when $\mathrm{R}_{\text {REF }}$ connects FB pin and GND, the current flows from $V_{\text {OUT }}$ through LED and $R_{\text {REF }}$ to GND will be decided by the current on $R_{\text {REF }}$, which is equal to following equation.

$$
\mathrm{L}_{\mathrm{LED}}=\frac{\mathrm{V}_{\mathrm{REF}}}{\mathrm{R}_{\mathrm{SET}}}
$$

Dimming Control

a. Using a PWM Signal to EN Pin

For controlling the LED brightness, the RT9293 can perform the dimming control by applying a PWM signal to EN pin. A low pass filter is implemented inside chip to reduce the slew rate of IWLED for preventing the audio noise. The internal soft start and the wide range dimming frequency from 200 to 200 kHz can eliminate inrush current and audio noise when dimming. The average LED current is proportional to the PWM signal duty cycle. The magnitude of the PWM signal should be higher than the maximum enable voltage of EN pin, in order to let the dimming control perform correctly.

Figure 1. PWM Dimming

b. Using a DC Voltage

Using a variable DC voltage to adjust the brightness is a popular method in some applications. The dimming control using a DC voltage circuit is shown in Figure 2. As the DC voltage increases, the current pass through R3 increasingly and the voltage drop on R3 increase, i.e. the LED current decreases. For example, if the VDC range is from OV to 2.8 V and assume the RT9293B is selected which $\mathrm{V}_{\text {REF }}$ is equal to 0.3 V , the selection of resistors in Figure 2 sets the LED current from 21 mA to 0 mA . The LED current can be calculated by the following equation.

Figure 2. Dimming Control Using a DC Voltage for the RT9293

c. Using a Filtered PWM signal

Another common application is using a filtered PWM signal as an adjustable DC voltage for LED dimming control. A filtered PWM signal acts as the DC voltage to regulate the output current. The recommended application circuit is shown as Figure 3. In this circuit, the output ripple depends on the frequency of PWM signal. For smaller output voltage ripple $(<100 \mathrm{mV})$, the recommended frequency of 2.8 V PWM signal should be above 2 kHz . To fix the frequency of PWM signal and change the duty cycle of PWM signal can get different output current. The LED current can be calculated by the following equation
$\mathrm{L}_{\mathrm{LED}}=\frac{\mathrm{V}_{\mathrm{REF}}-\frac{\mathrm{R} 3 \times\left(\mathrm{V}_{\text {PWM }} \times \text { Duty }-\mathrm{V}_{\text {REF }}\right)}{R 4+R_{\mathrm{DC}}}}{R_{\text {SET }}}$

Figure 3. Filtered PWM Signal for LEDDimming Control of the RT9293

By the above equation and the application circuit shown in Figure 3, and assume the RT9293B is selected which $\mathrm{V}_{\text {REF }}$ is equal to 0.3 V . Figure 4 shows the relationship between the LED current and PWM duty cycle. For example, when the PWM duty is equal to 60%, the LED current will be equal to 8.6 mA . When the PWM duty is equal to 40%, the LED current will be equal to 12.7 mA .

Figure 4

Constant Output Voltage Control

The output voltage of R9293 can be adjusted by the divider circuit on FB pin. Figure 5 shows the application circuit for the constant output voltage. The output voltage can be calculated by the following Equations.

$$
V_{\text {OUT }}=V_{R E F} \times \frac{R 1+R 2}{R 2} ; R 2>10 k
$$

Figure 5. Application for Constant Output Voltage

Application for Driving 3×13 WLEDs

The RT9293 can driver different WLEDs topology. For example, the Figure 6 shows the 3×13 WLEDs and total current is equal to 260 mA . The total WLEDs current can be set by the $R_{\text {REF }}$ which is equal to following equation.

$$
I_{\text {Total }}=\frac{V_{R E F}}{R_{S E T}}
$$

Figure 6. Application for Driving 3×13 WLEDs

Soft-Start

The function of soft-start is made for suppressing the inrush current to an acceptable value at the beginning of poweron. The soft-start function is built-in the RT9293 by clamping the output voltage of error amplifier so that the duty cycle of the PWM will be increased gradually in the soft-start period.

Current Limiting

The current flow through inductor as charging period is detected by a current sensing circuit. As the value comes across the current limiting threshold, the N-MOSFET will be turned off so that the inductor will be forced to leave charging stage and enter discharging stage. Therefore, the inductor current will not increase over the current limiting threshold.

OVP/UVLO/OTP

The Over Voltage Protection is detected by a junction breakdown detecting circuit. Once $\mathrm{V}_{\text {out }}$ goes over the detecting voltage, LX pin stops switching and the power N-MOSFET will be turned off. Then, the Vout will be clamped to be near Vovp. As the output voltage is higher than a specified value or input voltage is lower than a specified value, the chip will enter protection mode to
prevent abnormal function. As the die temperature > $160^{\circ} \mathrm{C}$, the chip also will enter protection mode. The power MOSFET will be turned off during protection mode to prevent abnormal operation.

Inductor Selection

The recommended value of inductor for 10 WLEDs applications is from 10 uH to 22 uH . Small size and better efficiency are the major concerns for portable devices, such as the RT9293 used for mobile phone. The inductor should have low core loss at 1 MHz and low DCR for better efficiency. The inductor saturation current rating should be considered to cover the inductor peak current.

Capacitor Selection

Input ceramic capacitor of 2.2 uF and output ceramic capacitor of $1 u F$ are recommended for the RT9293 applications for driving 10 series WLEDs. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges.

Thermal Considerations

For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula :
$P_{D(\text { MAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
Where $T_{J(M A X)}$ is the maximum operation junction temperature $125^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}$ is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions specification of RT9293, where $T_{J(M A X)}$ is the maximum junction temperature of the die $\left(125^{\circ} \mathrm{C}\right)$ and T_{A} is the maximum ambient temperature. The junction to ambient thermal resistance θ_{JA} is layout dependent. For WDFN-8L $2 x 2$ packages, the thermal resistance θ_{JA} is $165^{\circ} \mathrm{C} / \mathrm{W}$ on the standard JEDEC 51-3 single layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by following formula :
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(165^{\circ} \mathrm{C} / \mathrm{W}\right)=0.606 \mathrm{~W}$ for WDFN-8L2x2 packages
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(255^{\circ} \mathrm{C} / \mathrm{W}\right)=0.392 \mathrm{~W}$ for TSOT-23-6 packages

The maximum power dissipation depends on operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance θ_{JA}. For RT9293 packages, the Figure 7 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed.

Figure 7. Derating Curves for RT9293 Packages

Layout Considerations

\} A full GND plane without gap break.
\} LX node copper area should be minimized for reducing EMI.
\} The input capacitor $\mathrm{C}_{\mathbb{N}}$ should be placed as closed as possible to Pin 6.
\} The output capacitor Cout should be connected directly from the Pin 5 to ground rather than across the LEDs.
\} FB node copper area should be minimized and kept far away from noise sources (Pin 1, Pin 5, Pin 6).
\} The Inductor is far away receiver and microphone.
\} R $R_{\text {SET }}$ should be placed as close as possible to the RT9293.
\} Traces in bold need to be routed first and should be kept as short as possible.
\} VDD to GND noise bypass : Short and wide connection for the 1uF MLCC capacitor between Pin 6 and Pin 2 is recommended.
\} The voice trace should be far away from the RT9293.
\} The embedded antenna should be kept far away from and at different side of the RT9293.
\} The through hole of the RT9293's GND pin is recommended to be large and as many as possible.

Figure 8. The Layout Consideration of the RT9293

Datasheet Revision History

Version	Data	Page No.	Item	Description
O0C	$2008 / 1 / 16$		Headline General Description Features Absolute Maximum Ratings Recommended Operating Conditions Electrical Characteristics	Modify
2008/2/13			General Description Ordering Information Typical Application Circuit Electrical Characteristics	Modify. Previous RT9293 Phase Out_by Eric/PME
02C	$2008 / 3 / 18$		Typical Application Circuit Absolute Maximum Ratings Typical Operating Characteristics Applications Information	Modify Add Typical Operating Characteristics and Applications Information
03C	$2008 / 4 / 10$			

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.700	1.000	0.028	0.039
A1	0.000	0.100	0.000	0.004
B	1.397	1.803	0.055	0.071
b	0.300	0.559	0.012	0.022
C	2.591	3.000	0.102	0.118
D	2.692	3.099	0.106	0.122
e	0.838	1.041	0.033	0.041
H	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

TSOT-23-6 Surface Mount Package

Symbol	Dimensions In Millimeters		Dimensions In Inches				
	Min	Max	Min	Max			
A	0.700	0.800	0.028	0.031			
A1	0.000	0.050	0.000	0.002			
A3	0.175	0.250	0.007	0.010			
b	0.200	0.300	0.008	0.012			
D	1.950	2.050	0.077	0.081			
D2	1.000	1.250	0.039	0.049			
E	1.950	2.050	0.077	0.081			
E2	0.400	0.650	0.016	0.026			
e	0.500						0.020
L	0.300	0.400	0.012	0.016			

W-Type 8L DFN 2x2 Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
8F, No. 137, Lane 235, Paochiao Road, Hsintien City Taipei County, Taiwan, R.O.C.
Tel: (8862)89191466 Fax: (8862)89191465
Email: marketing@richtek.com

