ZC5126

深圳市奥菲斯科技有限公司

F ATURE

E InhSrentIMatche LED

 Drives th Six LEDsenta 3．6V Np Externfilosichottky Diesiepply Reqariredvitching FrequencyAutomatic－Star
Opfi LED t
HlighProtectio日1
Efficiency：\％
RequireOnl 0.2 mF OutpuCapaitor Eow Profile（ 3 mm ）t－23 c SOT

Packaging
APPLIATI N
$\mathrm{C}_{\text {Cellular Ph }} \mathrm{O}_{\mathrm{me}}$
PDAs，Handheld Computers
Digital Cameras
MP3 Players
GPS Receivers

DESCRIP
 IIO

 designed to drive up to six LEDs in series from a Li－Ion cell． Series connection of the LEDs provides identical LED currents and eliminates the need for ballast resistors．These devices integrate the Schottky diode required exter－nally on competing devices．Additional features include output voltage limiting when LEDs are disconnected，one－pin shutdown and dimming control．The ZC5126 has internal soft－start．The ZC5126 switches at 1.2 MHz ，allowing the use of tiny external components．Constant frequency switching results in low input noise and a small output capacitor． Just 0.22 ？ F is required for 4,5 －or 6 －LED applications． The ZC5126 is available in low profile（ 1 mm ）6－lead

TYPICLAPPLIATIO

Figure 1．Li－Ion Powered Driver for Four White LEDs

Conversion Efficiency

(Note 1)
Input Voltage (V_{IN}) .. 16 V
SW Voltage .. 36. 3V
FB Voltage ... 2V
CTRL Voltage ... 10V
Operating Temperature Range (Note 2) .. $-40{ }^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$ Maximum Junction Temperature 125? C
Storage Temperature Range $-65 ?^{\text {C }}$ to $150 ?^{C}$
Lead Temperature (Soldering, 10 sec)................. 300? C

SOT-23-6

$\mathrm{V}_{\text {OUT }}$ (Pin 1): Output Pin. Connect to output capacitor and LEDs. Minimize trace between this pin and output capacitor to reduce EMI.

GND (Pin 2): Ground Pin. Connect directly to local ground plane.

FB (Pin 3): Feedback Pin. Reference voltage is 200 mV . Connect LEDs and a resistor at this pin. LED current is determined by the resistance and CTRL pin voltage:
$\mathrm{I}_{\text {LED }} ? \frac{200 \mathrm{mV}}{\mathrm{R}_{\mathrm{FB}}}$ When $\mathrm{V}_{\mathrm{CTRL}} ? 1.8 \mathrm{~V}$
$\mathrm{I}_{\mathrm{LED}} ? ? \frac{\mathrm{~V}_{\mathrm{CTRL}}}{5 \cdot \mathrm{R}_{\mathrm{FB}}}$ When $\mathrm{V}_{\mathrm{CTRL}} ? 1 \mathrm{~V}$

CTRL (Pin 4): Dimming Control and Shutdown Pin. Ground this pin to shut down the device. When $\mathrm{V}_{\text {CTRL }}$ is greater than about 1.8 V , full-scale LED current is generated. When $V_{\text {CTRL }}$ is less than 1 V , LED current is reduced.
V_{IN} (Pin 5): Input Supply Pin. Must be locally bypassed with a 1 ? X5R or X7R type ceramic capacitor.

SW (Pin 6): Switch Pin. Connect inductor here.

Figure ZC512 Bloc Diagra
2. $6 \quad \mathrm{k} \quad \mathrm{m}$

Operatio

n
The ZC5126 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the block diagram in Figure 2. At the start of each oscillator cycle, the SR latch is set, which turns on the power switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of A2, the SR latch is reset turning off the power switch. The level at the negative input of A2 is set by the error amplifier A1, and is simply an amplified version of the difference between the feedback voltage and the reference voltage of
200 mV . In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is delivered to the output; if it decreases, less current is delivered. The CTRL pin voltage is used to adjust the reference voltage.

Minimum Output Current

The ZC5126 can drive a 3 -LED string at 1.5 mA LED current without pulse skipping. As current is further reduced, the device will begin skipping pulses. This will
result in some low frequency ripple, although the LED current remains regulated on an average basis down to zero. The photo in Figure 3a details circuit operation driving three white LEDs at a 1.5 mA load. Peak inductor current is less than 40 mA and the regulator operates in discontinuous mode, meaning inductor the
current

Figure 3. Switching Waveforms
reaches zero during the discharge phase. After the inductor current reaches zero, the SW pin exhibits ringing due to the LC tank circuit formed by the inductor in combination with switch and diode capacitance. This ringing is not harmful; far less spectral energy is contained in the ringing than in the switch transitions. The ringing can be damped by application of a 300 ? resistor across the inductor, although this will degrade efficiency. Because of the higher switching frequency, The photo in Figure 3b
a 0.2 mA load. Peak inductor current is less than 30 mA .

Inductor Selection

A 22 inductor is recommended for most ZC5126 applications. Although small size and high efficiency are major concerns, the inductor should have low core losses at 1.2 MHz and low DCR (copper wire resistance). Some inductors in this category with small size are listed in Table 1. The efficiency comparison of different inductors is shŏwn in Figure

4a.

PART NUMBER	DCR (?)	CURRENT RATING (mA)	MANUFACTURER

Figure 4. Efficiency Comparison of Different Inductors

Capacitor Selection

The small size of ceramic capacitors makes them ideal for ZC5126 applications. X5R and X7R types are recommended because they retain their capacitance over wider voltage and temperature ranges than other types such as Y5V or $\mathrm{Z5U}$. A $1 ?_{\mathrm{F}}$ input capacitor and a $0.22 ?_{\mathrm{F}}$ output capacitor are sufficient for most ZC5126 applications.

Table 2. Recommended Ceramic Capacitor Manufacturers

MANUFACTURER	PHONE	URL
Taiyo Yuden	$408-573-4150$	www.t-yuden.com
Murata	$814-237-1431$	www.murata.com
Kemet	$408-986-0424$	www.kemet.com

Soft-Start

The ZC5126 has an internal soft-start circuit to limit the input current during circuit start-up. The circuit start-up waveforms are shown in Figure 5.

Figure 5. Start-Up Waveforms

Inrush Current

The ZC5126 have a built-in Schottky diode.
When supply voltage is applied to the $\mathrm{V}_{\mathbb{I N}}$ pin, the voltage difference between $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ generates inrush current flowing from input through the inductor and the Schottky diode to charge the output capacitor to $\mathrm{V}_{\mathbb{I N}}$. The maximum current the Schottky diode in the ZC5126 can sustain is 1 A . The selection of inductor and capacitor value should ensure the peak of the inrush current to be below 1A. The peak inrush current can be calculated as follows:

$$
\begin{aligned}
& ? ? \frac{r ? 1.5}{2 \cdot L} \\
& ? ? ? \sqrt{\frac{1}{L \cdot C}-\frac{? ? ? .5}{4 \cdot L^{2}} ?^{2}}
\end{aligned}
$$

where L is the r is the resistance of inductumeend C is the output thempacitance. For low DCR inductors, which is usually the case for this application, the peak inrush current can be simplified as follows:

Table 3 gives inrush peak currents for some component selections.

Table 3. Inrush Peak Current

$\mathbf{V}_{\mathbf{I N}}(\mathbf{V})$	$\mathbf{r}(?)$	$\mathrm{L}(\mathrm{H})$	$\mathrm{c}\left({ }^{\mathrm{F}}\right)$	$\mathrm{I}_{\mathbf{P}}(\mathbf{A})$
5	0.5	22	0.22	0.38
5	0.5	22	1	0.70
3.6	0.5	22	0.22	0.26
5	0.5	33	1	0.60

LED Current and Dimming Control

The LED current is controlled by the feedback resistor (R1 in Figure 1) and the feedback reference voltage.

$$
I_{L E D}=V_{F B} / R_{F B}
$$

The CTRL pin controls the feedback reference voltage as shown in the Typical Performance Characteristics. For CTRL higher than 1.8 V , the feedback reference is 200 mV , which results in full LED current. CTRL pin can be used as dimming control when CTRL voltage is between 200 mV to 1.5 V . In order to have accurate LED current, precision resistors are preferred (1% is recommended). The formula and table for $R_{F B}$ selection are shown below.

$$
\begin{equation*}
R_{F B}=200 \mathrm{mV} / I_{\text {LED-Full }} \tag{1}
\end{equation*}
$$

Table 4. R_{FB} Resistor Value Selection

FULL $\mathbf{I}_{\text {LED }}(\mathrm{mA})$	R1 (?)
5	40.0
10	20.0
15	13.3
20	10.0

The filtered PWM signal can be considered as an adjustable DC voltage. It can be used to adjust the CTRL voltage source in dimming control. The circuit is shown in Figure 6. The corner frequency of R1 C1 should be lower than the freqency of the PWM signal. R1 needs to be much smaller than the internal impedance in the CTRL pin, which
is 50 k ?

Figure 6. Dimming Control Using a Filtered PWM Signal

Dimming Using Direct PWM

Unlike the ZC5126 does not have internal soft-start. Although the input current is higher during start-up, the absence of soft-start allows the CTRL pin to be directly driven with a PWM signal for dimming. A zero percent duty cycle sets the LED current to zero, while 100% duty cycle sets it to full current. Average LED current increases proportionally with the duty cycle of the PWM signal. PWM frequency should be between 1 kHz and 10 kHz for best performance. The PWM signal should be at least 1.8 V in magnitude; lower voltage will lower the feedback voltage as shown in Equation 1. Waveforms are shown for a 1 kHz PWM and 10 kHz PWM signal in Figures 7a and 7b respectively.

Figure 7 a .

Figure 7b.

Open-Circuit Protection

The ZC5126 have an internal open-circuit protection circuit. In the cases of output open circuit, when the LEDs are disconnected from the circuit or the LEDs fail, the VOUT is clamped at 30 V . The ZC5126 will then switch at a very low frequency to
minimize the input current. $\mathrm{V}_{\text {OUT }}$ and input current during output open circuit are shown in the Typical Performance Characteristics.

Board Layout Consideration

As with all switching regulators, careful attention must be paid to the PCB board layout and component placement. To maximize efficiency, switch rise and fall times are made as short as possible. To prevent electromagnetic interference (EMI) problems, proper layout of the high frequency switching path is essential. Place $C_{\text {OUt }}$ next to the $\mathrm{V}_{\text {OUT }}$ pin. Always use a ground plane under the switching
regulator to minimize interplane coupling. In addition, the ground connection for the feedback resistor R1 should be tied directly to the GND pin and not shared with any other component, ensuring a clean, noise-free connection. Recommended component placement is shown in Figure 8.

Figure 8. Recommended Component Placement

Li-Ion to Two White LEDs

Li-lon to Three White LEDs

CIN: TAIYO YUDEN JMK107BJ105
$C_{\text {OUT }}$: TAIYO YUDEN GMK212BJ224
L1: MURATA LQH32CN220

S6 Package
6-Lead Plastic SOT-23
(Reference LTC DWG \# 05-08-1636)

Li－Ion to Six White LEDs

