Preliminary Datasheet

1. General description

The OM6802 is a highly integrated compact CMOS color camera module with embedded Camera Signal Processor (CSP) that supports up to VGA resolution formats in a small package including a focused optical system. It uses Philips SeeMOSTM technology for high sensitivity and low noise. The device is programmable via an I²C serial interface. The CCIR656 compliant YUV output stream enables easy integration into mobile phones or PDAs.

2. Features

- Compact size camera module with integrated double element lens system
- On-chip CSP for color reconstruction and image enhance functions
- On-chip micro controller for auto functions (Auto White Balance, Auto Exposure, etc.)
- Supports (amongst others) VGA, CIF, QVGA, QCIF, QQVGA and QQCIF output formats
- Region Of Interest definition with up to 5 times H/V sub-sampling to enable digital zoom
- Horizontal / vertical mirroring
- 4.0 mm active image diagonal
- Active 5.0 x 5.0 µm pixels
- Bayer-RGB color filter array with micro lenses
- Real time white pixel blemish correction
- Lens shading correction
- 8-bit parallel YUV 4:2:2 output (CCIR656 / CCIR601 compliant)
- 8-bit parallel RGB 565, 555, 444 output, CCIR656 codes not supported
- Optional 10 bit raw RGB output available
- 12 bit Analog to Digital quantization
- 30 dB Digital programmable Gain Amplifier
- Low power, typ. 55 mW at 15 frames/sec VGA
- Power down mode accessible via I²C, supply current typ. < 2 μA
- Single supply voltage range: 2.6 .. 3.6 volt
- Master / slave operation
- I²C serial interface
- Highly sensitive, low noise SeeMOSTM technology
- Low fixed pattern noise

3. Application

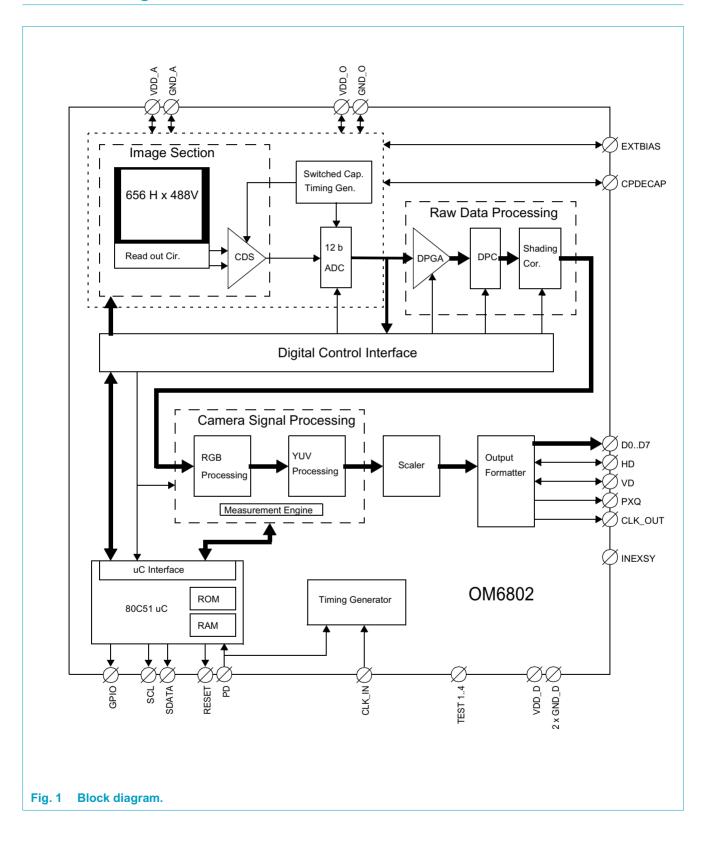
- Mobile phone
- PDA

4. Quick reference data

Table 1:	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Module dimensions ^[1]					
L	- length			8.0		mm
W	- width			8.0		mm
Н	- height			5.5	5.76	mm
m	Weight of module			t.b.d.		g
DFOV	Diagonal Field of View			60		0
V_{DD}	Supply voltage		2.6	2.8	3.6	V
Р	Power consumption	V _{DD} = 2.8 V		55 ^[2]		mW
SNR	Signal to Noise ratio	100 lux, 15 fps		46		dB
CLK_IN	Input clock frequency			12 ^[3]	t.b.d.	MHz

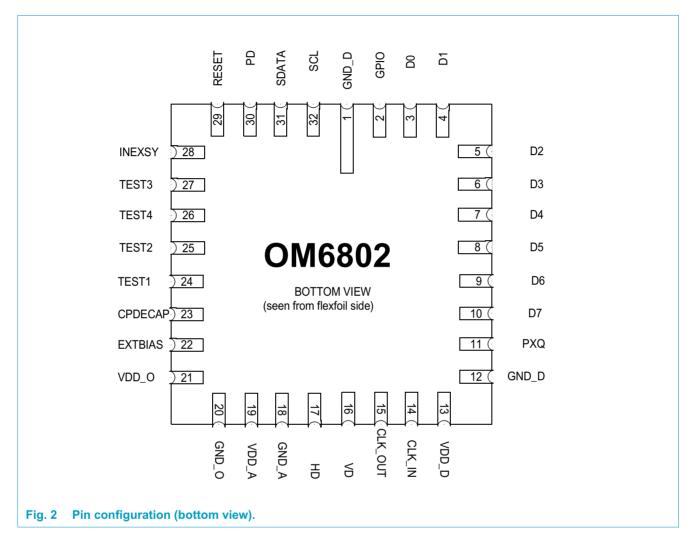
[1] Camera body only, flex foil not included

[2] 15 fps VGA @ 2.8 volt, 12 MHz


[3] Up to 15 fps VGA

5. Ordering information

Table 2: Ordering information


Type number	Package					
	Name Description		Version			
OM6802WC/M0	SOT794-AA1	Plastic window quad chip carrier; no leads; 32 terminals; with lens; body				
		customize flex on requirement by customerstandard flex				

6. Block diagram

7. Pinning information

7.1 Pinning LCC package

7.2 Pin description

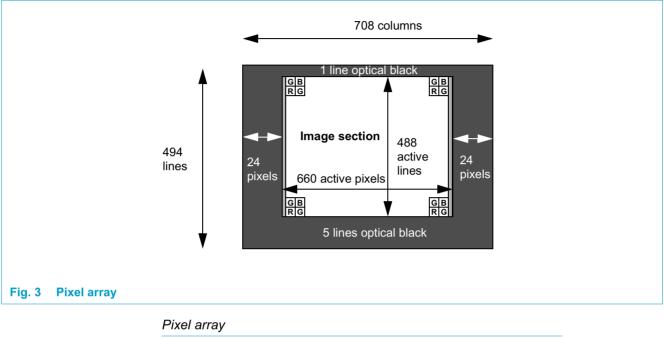
Table 3: Pin description

Table 5. Fill description						
Symbol	Pin	Туре	Description			
GND_D	1	Supply	digital ground			
GPIO	2	I/O dig	general purpose I/ O, (D0 i.c.o. raw RGB out)			
D0	3	O dig	digital output (LSB), (D1 i.c.o. raw RGB out)			
D1	4	O dig	digital output, (D2 i.c.o. raw RGB out)			
D2	5	O dig	digital output, (D3 i.c.o. raw RGB out)			
D3	6	O dig	digital output, (D4 i.c.o. raw RGB out)			
D4	7	O dig	digital output, (D5 i.c.o. raw RGB out)			
D5	8	O dig	digital output, (D6 i.c.o. raw RGB out)			
D6	9	O dig	digital output, (D7 i.c.o. raw RGB out)			

Symbol	Pin	Туре	Description
D7	10	O dig	digital output (MSB), (D8 i.c.o. raw RGB out,
PXQ	11	O dig	Pixel Qualifier, (D9 i.c.o. raw RGB out)
GND_D	12	Supply	digital ground
VDD_D	13	Supply	digital supply
CLK_IN	14	l dig	clock input
CLK_OUT	15	O dig	clock output
VD	16	I/O dig	vertical drive
HD	17	I/O dig	horizontal drive
GND_A	18	Supply	analog ground
VDD_A	19	Supply	analog supply
GND_O	20	Supply	output buffer ground
VDD_O	21	Supply	output buffer supply
EXTBIAS	22	l ana	internal ref. voltage (10 nF to VDD_A)
CPDECAP	23	I/O ana	internal ref. voltage (10nF to GND_A)
TEST1	24	l ana	connect to pin 22
TEST2	25	I/O ana	connect to pin 22
TEST4	26	l dig	connect to GND_D
TEST3	27	l dig	connect to GND_D
INEXSY	28	l dig	master / slave mode select input. ("Iow" or N.C. for master mode; internal pull-down)
RESET	29	l dig	reset input (active high; internal pull down)
PD	30	l dig	power down input (active high)
SDATA	31	l ² C	I ² C data input
SCL	32	I ² C	I ² C clock input

.

Functional description 8.


8.1 Image section

The image section consists of a pixel array, vertical and horizontal selection circuitry, a bench of column amplifiers and a read amplifier. The pixel array contains 708(H) x 494(V) pixels. The pixels are covered by red, green and blue color filters arranged in a RGB Bayer structure. A micro-lens is placed on top of the color filters to increase the effective fill factor for higher sensitivity. For black reference purposes a number of rows and columns are shielded from light.

The vertical selection circuitry has a double functionality. One is to select the line to be read, the other is to select the line to reset to determine the integration time period. The integration time is determined by a rolling shutter.

After a line has been selected and read by the column amplifiers, the horizontal selection circuitry takes care of the pixel data selection that is to be processed by the read amplifier.

The read amplifier performs Correlated Double Sampling (CDS) to suppress Fixed Pattern Noise (FPN).

Pixel array	
Active image diagonal	4.0 mm
Pixel size	5.0 μm x 5.0 μm
Optical active pixels	660 (H) x 488 (V)
Total no. of pixels	708 (H) x 494 (V)
Optical black columns	Left: 24 Right: 24
Optical black lines	Top: 1 Bottom: 5

8.2 Signal Processing

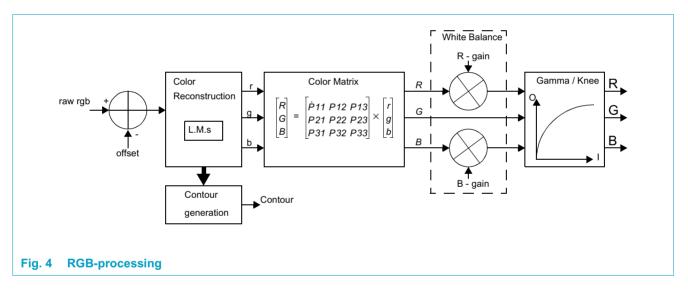
8.2.1 Analog Signal Processing

The Correlated Double Sampling (CDS) output signal is applied to a high performance Analog to Digital Converter (ADC). The ADC converts the analog CDS output signal into a 12-bit digital video stream.

The input stage of the ADC converts the single ended input signal into a differential signal. Then a number of quantization stages take care for a high precision quantization.

A black loop is included around the ADC to have the average digital output code of the black reference pixels on a predefined level. The loop takes care for optimum use of the ADC input range in all operating conditions and for all production parts.

8.2.2 Raw Data Processing


Behind the ADC three raw data processing circuits are passed before the data is applied to the embedded Camera Signal Processing (CSP) function.

The first one is the Digital Programmable Gain Amplifier (DPGA). Because of the incorporated high performance ADC digital amplification is possible. This is justified because the noise of the analog core up to the output of the ADC is dominated by the pixel reset noise (kT/C noise). This means that the ADC is nicely quantizing the pixel noise and therefore analog gain is superfluous.

The DPGA gain range is 30 dB.

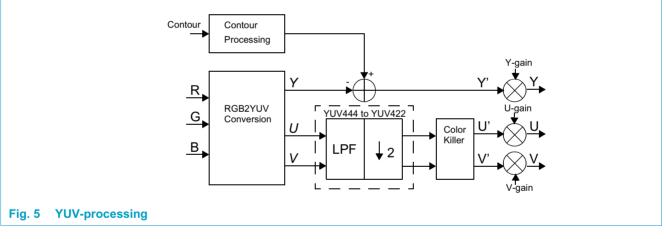
Next step is the on-the-fly Defect Pixel Correction (DPC). The circuit detects and corrects single white pixels. Neighboring pixels from the same color plane as well as pixels from the other color planes are used in a quasi two-dimensional way to detect defects. Although tuning options exists it is believed that the default DPC-settings offer optimum circuit performance.

Finally the data passes a shading correction (anti-vignetting) circuit to correct for shading caused in the optical path.

8.2.3 RGB processing

First the input black level is restored to have the data referred to digital code "0". Then the raw RGB signal is applied to a reconstruction function. This function basically generates a triplet of raw RGB data for every pixel of the video stream. Red, green and blue information are recovered for every single pixel by means of spatial filtering, using the physically surrounding colored pixels.

Parallel to the reconstruction a contour signal is generated which is later on in the processing added to the video luminance signal to improve the sharpness impression of the final picture. Both horizontal and vertical contour information are generated.


Behind the reconstruction function a three by three color matrix corrects for the non-ideal spectral response of the colored pixels. The matrix takes care of the color fidelity in the finally displayed picture. It matches the spectral sensitivity of the image array with the color response of the displaying device (CRT is used for default settings).

The succeeding white balance circuit takes care of the color fidelity over a wide color temperature range. The white balance consists of controllable gain circuits in the red and blue channel. By default the gains are controlled by the Auto White Balance (AWB) loop which runs on the embedded micro-controller. The loop takes care that white parts in the scene remain white when the color temperature of the scene illumination changes.

Besides automatic white balance also fixed white balance settings can be applied. A set of settings is available for incandescent, fluorescent and daylight illumination conditions. If desired the white balance settings for the red and blue gain can be overruled by the application.

After white balancing the signals are applied to a gamma/knee correction circuit. Knee compression takes care for the visibility of details in highly illuminated areas. The gamma correction compensates for the non-linear response of the displaying Cathode Ray Tube (CRT). The applied gamma correction is programmable in 64 steps. By default the gamma correction is tuned to be compliant with the normalized ARD gamma-function (0.45 gamma).

8.2.4 YUV processing

After RGB processing the channels are separated into a luminance (Y) and two color difference paths (UV). The signals are generated using the following formulas:

- Y = [19R + 38G + 7B] / 64
- U = B Y
- V = R Y

The YUV signal is converted into a YUV 4:2:2 format by a factor two down-sampling of the UV signals. In advance of the down-sampling the UV chrominance signals are low pass filtered to suppress aliasing artefacts.

Cosited positioning of the UV samples w.r.t. the Y sample as specified in the Rec. 601 specification is supported. Optionally this half pixel shift of UV w.r.t. Y can be suppressed to ease external conversion to a JFIF (MPEG1) compliant YUV 4:2:0 data format.

Parallel to the UV down scaling the contour signal is processed. The vertical contour gain can be tuned separately from the horizontal contour. This allows it to tune the amount of vertical contour w.r.t. the horizontal contour. Then the horizontal and vertical contour signals are added and applied to a contour coring and a contour gain circuit. Finally the contour signal is added to the luminance (Y) signal.

After the UV down-scaling the chrominance processing includes a false color killer. The color killer suppresses wrong colors which could occur in case parts of the scene are overexposed which causes pixels to saturate.

The YUV processing function continues with separate gain controls for the Y, U and V signals. These gains are used to fine tune the Y, U and V color balance and to adjust the luminance and color saturation level without disturbing the Auto Exposure (AE) and Auto White Balance (AWB) loops.

8.2.5 Measurement engine

The measurement engine extracts measurement data from different color domains of the camera signal processing chain. This measurement data is used by the auto-control loops which run on the embedded micro-controller.

The measurement windows can be tuned on a 40×40 pixels grid to enable the possibility for e.g. back light compensation.

For auto exposure five parallel measurements are done. The intensity levels of pixels falling in the different defined measurement windows are accumulated during each frame.

For auto white balance a single measurement window can be defined. Before a pixel contributes to the white balance measurement the color tone of the pixel is checked. When the color tone complies to the defined limited white area the signal levels are added to the measurement data.

During each frame, the micro-controller has access to the values measured in the previous frame.

8.3 Output formatting

8.3.1 Scaler

The scaler behind the signal processing chain guarantees an optimum quality video stream for sub-VGA resolution output formats. Limiting the resolution at the input of the CSP would lead to color aliasing effects from the reconstruction block because of low spatial correlation between the image data samples in high frequent areas.

The scaler function performs Region Of Interest (ROI) selection and sub-sampling.

The flexible ROI definition in combination with an up to 5 times sub-sampling ratio, in both horizontal and vertical direction, allows for zooming and a wide range of active resolution output formats.

In advance of sub-sampling the YUV data passes a selectable low pass filter to suppress aliasing artefacts.

8.3.2 Output formatter

Depending on the desired output format, first a YUV or RGB formatter is passed.

The YUV formatter performs a simple clipper function to limit the data according one of three supported data ranges.

In case of an RGB output format one can select between an RGB 565, RGB 555 or RGB 444 package formats. The RGB-data is regenerated from the YUV input signals. In this way the signal conditioning as performed on the YUV data is maintained. To mask the truncation for the different RGB output formats noise shaping can be applied.

After the YUV/RGB data formatting following functions are passed successively:

- Inactive video level insertion. Blanking levels for Luminance (by) and Chrominance (bc) can be selected. (by/bc = #10/#80 or by/bc= #00/#00).
- YUV swapping. This function will swap the bytes of UYVY to VYUY, YUYV or YVYU (the inactive levels are also swapped)
- Synchronization code insertion. Optionally synchronization codes according the CCIR656 standard can be merged into the digital video stream.
- Data spreading. When the output resolution is reduced by means of sub-sampling, this function enables it to have a continuous or broken Pixel Qualifier signal during a line period.

8.4 Micro-controller (μC)

The device is equipped with a 80C51 micro-controller core.

The controller takes care of:

- Controlling of auto-loops (AE, AWB, NGC, etc.)
- I2C command handling
- Power Down
- Request processing

8.5 Digital Control Interface

This block basically generates all timing signals required for the read out of the image array and processing of the raw RGB output signal.

The block takes care of:

Video frame format definition

The number of clocks per line and the number of lines per frame can be programmed (max. 1023 clocks/line and 1023 lines/frame). The video frame should have at least 484 lines / frame and 800 clocks/line.

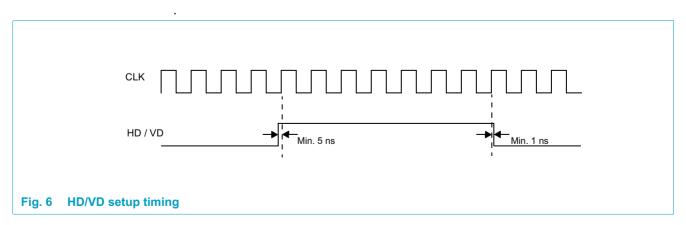
- Vertical / horizontal mirroring
- DPGA gain
- Exposure time
- Timing windows for analog signal processing
- Interfacing with the embedded micro-controller

8.6 Timing generator

This circuit generates the clock signals required by the different functions incorporated. To avoid interference from the digital into the analog core the overall chip timing is properly tuned.

The timing generator supports the option to have different frame rates available at stable input clock. Clock division factors of 2, 4, 8 and 16 can be selected. For the default 12 MHz input clock the device supports frame-rates from 15 down to 1.875 fps. The maximum frame-rate is 30 fps VGA for a minimum input clock frequency of 24 MHz.

9. Device control


9.1 Master / slave mode operation

The device supports master/slave mode operation. In master mode the horizontal (HD) and vertical (VD) synchronization signals are generated by the sensor. In slave mode these signals have to supplied.

When pin INEXSY is left unconnected (or logic "low" level applied) the master mode is defined by means of an internal pull down resistor. The HD and VD output signals are programmable with the pixel clock resolution. This allows it to shape these signals with respect to the digital video stream.

The slave mode is activated when pin INEXSY is connected to a logic high level. Now the HD and VD pins are input. In this mode it is not possible to tune the position of the digital video with respect to the applied HD and VD signals.

For external synchronization the device performs a rising edge detection on both the HD and VD input signals. To avoid sensitivity for glitches some digital filtering is performed. The high and low duration of the applied HD signal should be at least 3 clock periods to be detected as a valid HD signal. For VD the minimum duration should be at least 2 clock periods. The maximum supported frame-format is 1023 clks/line and 1023 lines/frame

9.2 Device reset

For automatic device initialisation a Power On Reset (POR) function is included. When the supply voltage level raises above a certain trip-level (about 2 volt) the initialisation is triggered. The register settings are programmed now to its default settings as they are stored in the embedded ROM.

A separate RESET input is available to trigger the initialisation process independent from the POR function. The RESET is active at a logic high level.

9.3 Power Down (PD)

The power down function can be activated via the PD pin. When pulling this pin to a logic 'high' level, the embedded micro-controller generates the signals to put the device into power down. The applied input clock as well as the supply voltage do not have to be suppressed externally to reach a typical power down current of 1.3 uA. Keeping the supply voltage up maintains the register settings in the device.

The PD mode can also be activated via an I2C command. In this case the input clock has to be suppressed externally to reach the low power down current.

9.4 I²C interface

The standard I²C interface is used with a maximum clock frequency of 400 kHz. The communication is two wire and the sensor operates always in the slave mode. The sensor device slave address is (starting with MSB AD7) 0110100(0). The LSB determines read/write mode: 0 = write, 1 = read. In read mode the sensor ID can be checked. For this module it is (MSB....LSB) 00010010.

10. Data output formats

The supported output formats are given in table 4.

Table 4: Output formats

Output pin	4:2:2 CCIR-656 (8 bit)		I	RGB 565		RGB 555		RGB 444		
D7	U ₀₇	Y ₀₇	V ₀₇	Y ₁₇	R ₄	G ₂	х	G ₂	х	G ₃
D6	U ₀₆	Y ₀₆	V ₀₆	Y ₁₆	R ₃	G ₁	R ₄	G ₁	Х	G ₂
D5	U ₀₅	Y ₀₅	V ₀₅	Y ₁₅	R ₂	G ₀	R ₃	G ₀	Х	G ₁
D4	U ₀₄	Y ₀₄	V ₀₄	Y ₁₄	R ₁	B ₄	R ₂	B ₄	Х	G ₀
D3	U ₀₃	Y ₀₃	V ₀₃	Y ₁₃	R ₀	B ₃	R ₁	B ₃	R ₃	B ₃
D2	U ₀₂	Y ₀₂	V ₀₂	Y ₁₂	G_5	B ₂	R ₀	B ₂	R ₂	B ₂
D1	U ₀₁	Y ₀₁	V ₀₁	Y ₁₁	G ₄	B ₁	G ₄	B ₁	R ₁	B ₁
D0	U ₀₀	Y ₀₀	V ₀₀	Y ₁₀	G ₃	B ₀	G ₃	B ₀	R ₀	B ₀

Remark:

An option exists to internally bypass the CSP and to have 10 bits raw RGB data externally available. In this case the output clock is suppressed. The data capturing device should use the input clock to capture the sensor data.

10.1 YUV data ranges

Following data ranges are supported:

- 1 Data clipping according the CCIR601 standard
 - Y-range : 16 .. 235 (220 levels)
 - U-range: 16 .. 240 (225 levels; colorless at 128)
 - V-range : 16 .. 240 (225 levels; colorless at 128)

Optionally CCIR656 synchronization codes can be merged into the digital video stream.

- Data clipping between levels 1 and 254.
 A maximum dynamic range maintaining the option to use CCIR 656 synchronization codes is achieved.
- No data clipping.Data acquisition should be performed by using the PXQ and VD signals.

For all ranges the video blanking codes can be selected between 10/80 or 00/00.

10.2 YUV swapping

Following YUV formats are supported:

- CCIR 656 standard. The data sequence is: $U_0Y_0V_0Y_1$ $U_1Y_2V_1Y_3$ $U_2Y_4V_2Y_5$
- FOURCC definition YUY2. Swapping of Y/UV data. In this mode the sequence becomes:

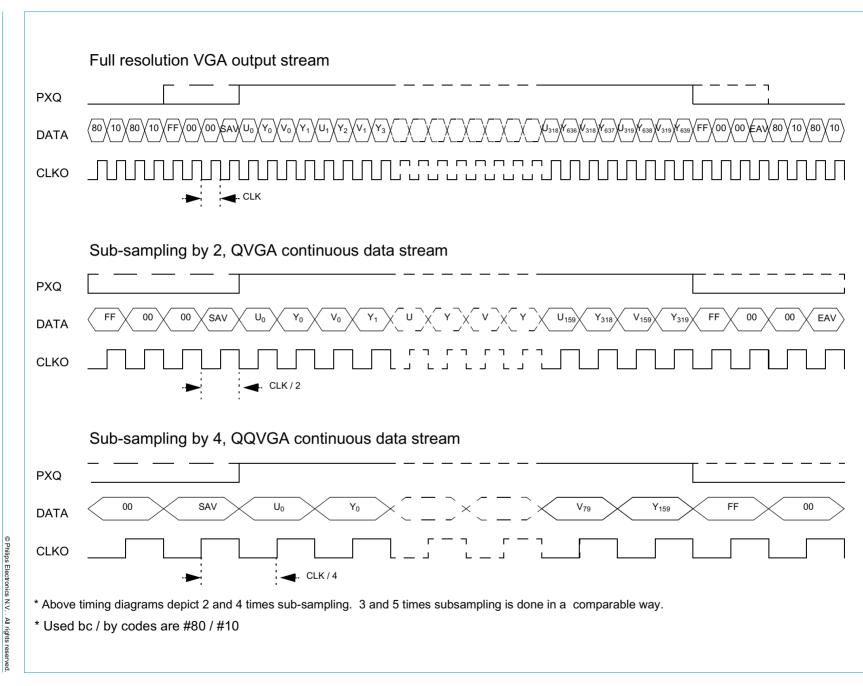
 $Y_0U_0Y_1V_0$ $Y_2U_2Y_3V_2$ $Y_4U_4Y_5V_4$

• FOURCC definition YVYU. Swapping of Y/UV and U/V data. In this mode the sequence becomes:

 $Y_0V_0Y_1U_0 Y_2V_2Y_3U_2 Y_4V_4Y_5U_4$

- U/V swapping.In this mode the sequence becomes: $V_0Y_0U_0Y_1\;V_1Y_2U_1Y_3\;V_2Y_4U_2Y_5$

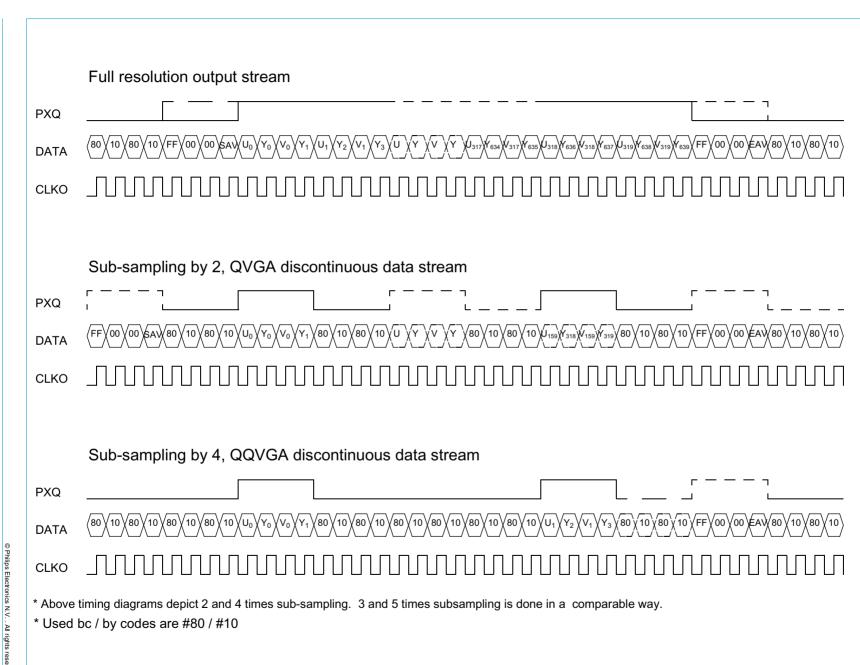
10.3 RGB output data

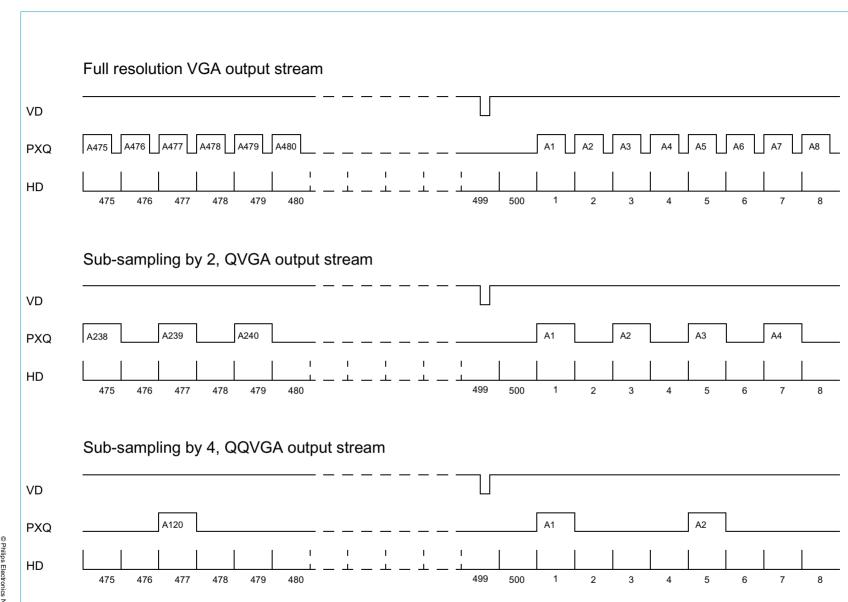

The RGB data stream is regenerated from the processed YUV data stream. Because of the limited word length of the different RGB formats truncation errors are introduced. To mask these truncation errors noise-shaping is applied.

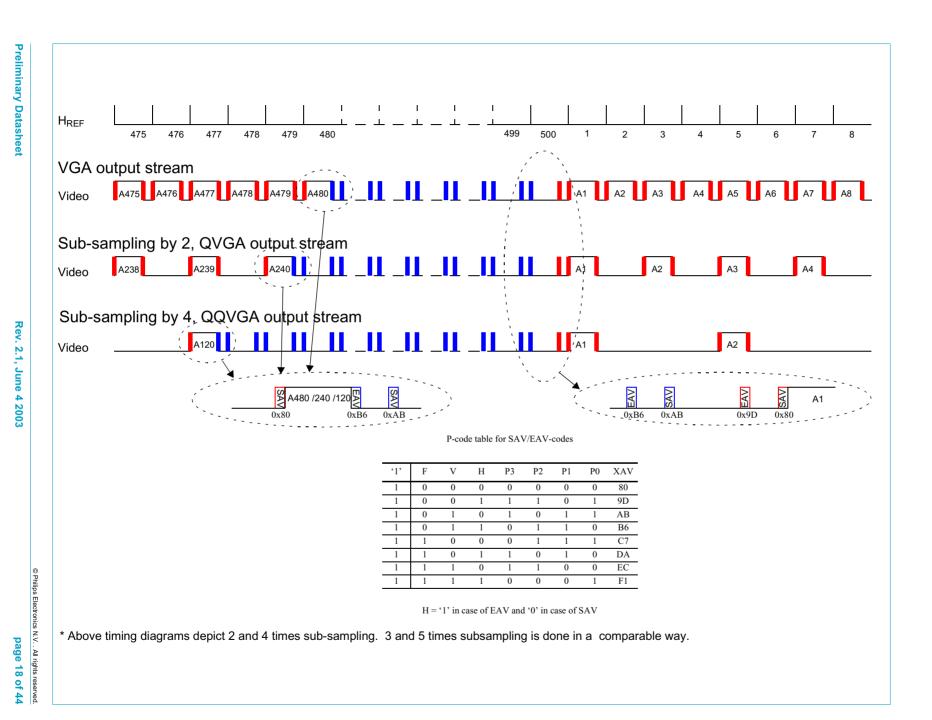
CCIR656 synchronization codes are not supported for the RGB output streams.

11. Video timing

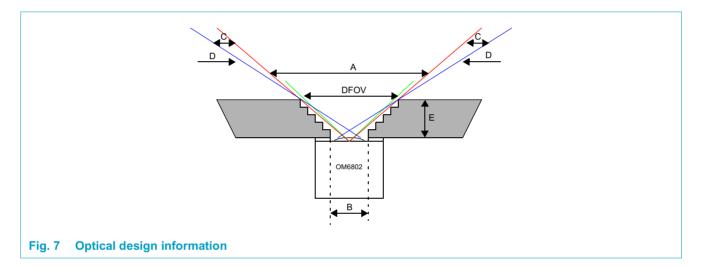
The timing diagrams on the next pages depict the waveforms for two and four times sub-sampling in both horizontal and vertical direction. For three and five times sub-sampling the waveforms look similar.






VGA CMOS camera module

M6802


* Above timing diagrams depict 2 and 4 times sub-sampling. 3 and 5 times subsampling is done in a comparable way.

12. Sunshade

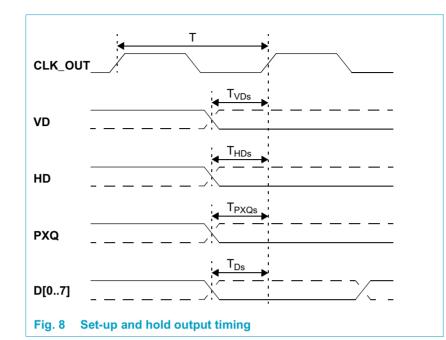
Figure 7 is intended to serve as a guideline for designing the sunshade in the application:

- DFOV: Diagonal field of view. (60 degrees)
- A: Mechanical free field of view.
- B: Opening diameter. Exact dimension depend on the module alignment accuracy in the application.
- C: Partly covered area outside DFOV. Should be minimized for optimum sunshade performance.
- D: Fully covered area
- E: Sunshade thickness. Largely determines the sunshade quality.

It is recommended to contact Philips sales office for support in sunshade design.

13. Limiting values

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	Supply voltage		-0.5	4.6	V
I _{DD}	Supply current		-	40	mA
lı	DC input current at any input		-10	+10	mA
lo	DC output current at any output		-10	+10	mA
VI	DC input voltage (not exceeding 4.6 V)		-0.5	V _{DDD} + 0.5	V
T _{amb}	Ambient temperature ^[1]		- 20	70	°C
T _{stg}	Storage temperature		- 40	75	°C
	Pressure on barrel			t.b.d.	Ра
	Torque on barrel			t.b.d.	Nm


[1] Image quality might degrade at high temperature range and condensation might occur at low temperature range. These effects will slowly disappear when the device is brought back to standard operating conditions.

14. Device Characteristics

14.1 Interface characteristics

Table 6:Timing and levels of control, sync and output signals (default operation, VDDD = VDDO = VDDA = 2.8 V,
fclk = 12 MHz, Tamb = 25 °C)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{cl}	Clock frequency			12	t.b.d.	MHz
	Input levels HD, VD (INE	XSY = 1)				
V _{IH}	Input High voltage		0.7*V _{DDD}			V
V _{IL}	Input Low voltage				$0.3^{*}V_{DDD}$	V
	Output levels HD, VD, D	0D7 (INEXSY = 0)				
I _{OH}	High level output current	$V_{OH} = V_{DDD} - 0.4 V$	-2			mA
I _{OL}	Low level output current	V _{OL} = 0.4 V	2			mA
V _{OH}	High level output voltage		V _{DDD} - 0.4	1		V
V _{OL}	Low level output voltage				0.4	V
t _{PHL} , t _{PLH}	Output transition time	load = 30 pF,				
	- D07, HD, VD, PXQ	10 - 90 %	8.0	13.5	18	ns
	- CLK_OUT		4.0	6.5	9	ns
	Timing HD, VD, RESET (Inputs)				
t _{SETUP}	Set-up time		5			ns
t _{HOLD}	Hold time		1			ns

Table 7: Setup and hold times related to CLK_OUT ^[1] ^[2] ^[3]

Time	Description	Min. (ns)	Max. (ns)
T_{VDs}	Setup time for VD	(T/2) - 2	(T/2) + 2
T _{HDs}	Setup time for HD	(T/2) - 2	(T/2) + 2
T _{PXQs}	Setup time for PXQ	(T/2) - 2	(T/2) + 2
T _{Ds}	Setup time for D07	(T/2) - 2	(T/2) + 2
T _{Dh}	Hold time for D07	(T/2) - 2	(T/2) + 2

[1] Figures refer to a full CLK_OUT period having 50 % duty cycle

[2] For highest frame-rate CLK_OUT is equal to the device input clock. In this case the tabulated figures have to be corrected according the duty cycle of the applied input clock.

[3] Figures are valid for equal capacitive loads on device outputs. Capacitive load dependency is given in table 8.

Table 8: Data output delay vs. capacitive load

	Propagation delay (ns)					
	C _{load} = 5 pF	C _{load} = 12 pF	C _{load} = 30 pF			
Rising Edge	4.0	5.4	7.9			
Falling Edge	4.9	6.4	9.1			

14.2 Optical characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SNR	Signal to noise ratio for Luminance	Applied light intensity is 100 lux		46		dB
F	Aperture			2.5		
f	Focal length			3.6		mm
	Focal range					
	- nearest point			35		cm
	- farest point			inf.		cm
D _{FOV}	Diagonal field of view			60		0
	- Horizontal F.O.V.			48		
	- Vertical F.O.V.			36		
	MTF 25 cy/mm ^[1]	Position in image field				
		- center	70			%
		- 60 % image height	50			%
	Distortion	Total field		3		%
	Relative illumination	At 100% of image height ^[2]	40	48		%
	(vignetting)					
	Flare ratio	According to ISO/DIS 9358			6	%

Table 9: Optical characteristics (V_{DDD} = V_{DDO} = V_{DDA} = 2.8 V, f_{clk} = 12 MHz, T_{amb} = 25 °C)

[1] MTF definition and relevant conditions

- The MTF in a Window of interest is defined as:
- $MTF = \frac{Max Min}{Max + Min} \cdot \frac{1}{C} \cdot 100\%$, with C the contrast of the scene, max the highest pixel signal

and *min* the lowest signal in the WOI.

- The MTF is determined with a special test chart at 50 cm distance from the module.
- The test chart consists of a chess pattern -horizontal and vertical repetition of black and white squares- with a frequency of 25 cy/mm on the sensor.
- The MTF is measured in 5 Windows of interest as indicated in figure 9
- MTF is measured on only green pixels on raw RGB video output.
- [2] Checked during final test with shading correction active

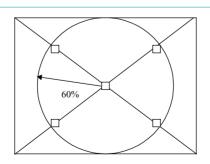


Fig. 9 Position of MTF measurement windows

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{sat}	Output saturation voltage	At analog sensor output, Gain = 0dB	1000	1100		mV
CF	Conversion Gain	At analog sensor output, Gain = 0dB		52		μV/e-
l _d	Photodiode dark	T _{amb} = 25 °C		0.1	0.2	nA/cm ²
	current	T _{amb} = 60 °C		1.6	3	nA/cm ²
FPN	Fixed pattern noise	T _{amb} = 25 °C		0.3	0.5	mV _{rms}
		T _{amb} = 60 °C		2.4	4	mV _{rms}
Noise	Random noise	T _{amb} = 25 °C		1.7	2.0	mV _{rms}
DR	Dynamic Range	T _{amb} = 25 °C	54	56		dB
SEN	Sensitivity	At image centre, gain = 0				
	- red	dB, IR cut-off @ 650 nm		70		mV/lx
	- green			67		mV/lx
	- blue			44		mV/lx

Table 10: Pixel characteristics (T_{int} = 1/30 sec, T_{colour} = 3200 K)

14.3 Power Consumption

Symbol	Parameter	Conditions	Тур	Max	Unit	
V _{DDD}	Supply voltage	$V_{DD_{-}D} = V_{DD_{-}A}$	2.6	2.8	3.6	V
I _{DD}	Supply current	$V_{DD_D} = V_{DD_A} = 2.8V$				
		- from V_{DD_D}		13.7	16	mA
		- from V_{DD_A}		7.5	13.0	mA
		- power down		0.8	2	μA

. D7.1 ÷ ...

15. Camera modes

Three camera modes are available, which can be selected via the REQ_ENTER_FACTORY_MODE request.

These modes are the following:

- Normal mode: the default mode
- Factory mode: a debug mode
- Register access mode: a debug mode

15.1 Normal mode

This is the default operating mode. Desired changes of camera settings can be done via the different available SW requests. Only a limited set of embedded registers is directly accessible (table 12) to change default settings.

Table 12:	
Register address	Register mnemonic
0x05 0x0D	addr_cic_tbg_05addr_cic_tbg_13
0x15 0x1D	addr_cic_rgb_matrix_00addr_cic_rgb_matrix_08
0x20	addr_cic_gamma_00
0x29	addr_cic_lum_process_04
0x2A	addr_cic_lum_process_05
0x6E	DCI_GINCB
0x86	DCI_DPC_PARAM
0x8B 0x8D	DCI_50HZ_FD, DCI_60HZ_FD, DCI_FD_H
0x90	DCI_HDREL
0x91	DCI_HDFEL
0x92	DCI_HDRCL
0x93	DCI_VDFCL
0x94	DCI_VDRLL
0x95	DCI_VDFLL
0x96	DCI_VRFLH
0x97	DCI_VHRFCH

The way to access these registers is described hereafter (compare to the I2C requests):

Control identifier code = Register address

Control Mnemonic = Value to be written in the register

15.2 Factory mode

A debug mode, which is not meant to be used in the application.

In factory mode, the auto-loops are switched off, but all hardware registers are accessible via I2C.

15.3 Register access mode

This mode is the association of the 2 previous ones: in this mode, auto loops are running and all hardware registers are accessible.

16. Camera Requests

To ease the device application a high level interface is defined for easy access and tuning of the most commonly used camera parameters. Settings like, contrast, brightness, color saturation, sharpness, etc. are easily accessible via the defined request bytes.

After sending a command to one of the request registers the embedded micro-controller takes care of a proper device programming. All internal registers related to the request are properly set.

When settings different from the predefined request bytes have to be changed contact should be taken with the sales office for further application support.

16.1 Status Requests

Table 13:

Default value	Not applicable
Function	 The purpose of this request is to restore the default configuration by downloading the default settings (called factory settings), which are the following: auto exposure on/off - flicker less mode - backlight compensation mode auto_ngc - auto_contour - white balance mode - black & white / color mode default ngc_contrast_preset default awb_manual_red_gain default exposure time default brightness default gamma default contour
Data byte value	0x11
0xFC	REQ_RESTORE_FACTORY_DEFAULTS
Control identifier cod	e Control Mnemonic

Table 14:

	Control identifier code	Control Mr	nemonic	:		
bit 7 Scan direction Left / Right 0 Left to right 1 Right to left (horizontal mirror) bit 6 Scan direction Up / Down 0 Top to bottom scan (vertical mirror) 1 Bottom to top scan 0 Top to bottom reme_rate Zoom 0 VGA 15 no 1 VGA 3.75 no 2 VGA 1.875 no 3 VGA 1.875 no 4 QVGA 7.5 No 5 QVGA 7.5 No 6 QVGA 3.75 No 7 QVGA 1.875 No 6 QVGA 3.75 No 7 QVGA 1.875 No 8 QVGA 1.875 Max 9 QVGA 1.875 Max 10 QVGA 3.75 No 11 QVGA 1.875 No	0xFD	REQ_RES	OLUTIO	ON_FRAMERAT	E_ZOOM	
0 Left to right 1 Right to left (horizontal mirror) bit 6 Scan direction Up / Down 0 Top to bottom scan (vertical mirror) 1 Bottom to top scan (vertical mirror) 1 Resolution no 1 NGA 15 1 QVGA 1.875 1 QVGA 1.875 1 QVGA 1.875 1 QVGA 1.875	Data byte value	Bits	ID	Description		
Image: rest of the second se		bit 7		Scan direction	on Left / Right	
bit 6 Scan direction Up / Down 0 Top to bottom scan (vertical mirror) 1 Bottom to top scan Bits[5.0] Resolution Frame_rate Zoom 0 VGA 15 no 1 VGA 7.5 no 2 VGA 3.75 no 3 VGA 1.875 no 4 QVGA 1.5 No 5 QVGA 1.875 No 6 QVGA 1.875 No 7 QVGA 1.875 No 8 QVGA 1.875 Max 9 QVGA 1.875 Max 10 QVGA 1.875 Max 11 QVGA 1.875 No 12 QQVGA 1.875 Max 13 QQVGA 1.875 No 14 QQVGA 1.875 Max 15 QQVGA 1.875 Max <			0	Left to right		
bit 6 Scan direction Up / Down 0 Top to bottom scan (vertical mirror) 1 Bottom to top scan Bits[5.0] Resolution Frame_rate Zoom 0 VGA 15 no 1 VGA 7.5 no 2 VGA 3.75 no 3 VGA 1.875 no 4 QVGA 1.5 No 5 QVGA 1.875 No 6 QVGA 1.875 No 7 QVGA 1.875 No 8 QVGA 1.875 Max 9 QVGA 1.875 Max 10 QVGA 1.875 Max 11 QVGA 1.875 No 12 QQVGA 1.875 Max 13 QQVGA 1.875 No 14 QQVGA 1.875 Max 15 QQVGA 1.875 Max <			1	Right to left (h	orizontal mirror)	
0 Top to bottom scan (vertical mirror) 1 Bottom to top scan Bits[5.0] Resolution Frame_rate Zoom 0 VGA 15 no 1 VGA 3.75 no 2 VGA 3.75 no 3 VGA 1.875 no 4 QVGA 15 No 5 QVGA 1.875 No 6 QVGA 1.875 No 6 QVGA 1.875 No 7 QVGA 1.875 No 8 QVGA 1.875 Max 9 QVGA 1.875 Max 10 QVGA 1.875 No 11 QVGA 1.875 No 12 QQVGA 1.5 No 13 QQVGA 1.5 No 14 QQVGA 1.5 Max 15 QQVGA 1.5 Max 1		bit 6	•	- ·	•	
Bottom to top scan Bits[5.0] Resolution Frame_rate Zoom 0 VGA 15 no 1 VGA 7.5 no 2 VGA 3.75 no 3 VGA 1.875 no 4 QVGA 15 No 5 QVGA 7.5 No 6 QVGA 3.75 No 7 QVGA 1.875 No 8 QVGA 1.875 Max 9 QVGA 1.5 Max 10 QVGA 1.5 Max 11 QVGA 1.875 No 12 QQVGA 1.5 No 13 QQVGA 1.5 No 14 QQVGA 1.5 Max 15 QQVGA 1.5 Max 15 QQVGA 1.5 Max 15 QQVGA 1.5 Max 1			0		-	
Bits[50]ResolutionFrame_rateZoom0VGA15no1VGA7.5no2VGA3.75no3VGA1.875no4QVGA15No5QVGA7.5No6QVGA3.75No7QVGA1.875No8QVGA1.875Max9QVGA7.5Max10QVGA3.75Max11QVGA1.875Max12QQVGA1.875No13QQVGA7.5No14QQVGA3.75No15QQVGA1.875No16QQVGA1.875No17QQVGA1.5Max18QQVGA1.5Max19QQVGA1.875Max11QVGA1.875Max12QQVGA1.5No13QQVGA1.5No14QQVGA1.5Max15QQVGA1.5Max16QQVGA1.875Max17QQVGA1.875Max18QQVGA1.875No19QQVGA1.875No19QUVGA1.875No10Sub-QCIF1.5No13Sub-QCIF3.75No14Sub-QCIF1.875No			0		scan (vertical mir	ror)
0 VGA 15 no 1 VGA 7.5 no 2 VGA 3.75 no 3 VGA 1.875 no 4 QVGA 15 No 5 QVGA 7.5 No 6 QVGA 3.75 No 7 QVGA 1.875 No 8 QVGA 1.875 No 9 QVGA 7.5 Max 9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QQVGA 1.5 No 13 QQVGA 7.5 No 14 QQVGA 3.75 No 15 QQVGA 1.875 No 14 QQVGA 3.75 Max 15 QQVGA 1.875 Max 16 QQVGA 1.875 Max <td></td> <td></td> <td>1</td> <td>•</td> <td></td> <td></td>			1	•		
1 VGA 7.5 no 2 VGA 3.75 no 3 VGA 1.875 no 4 QVGA 15 No 5 QVGA 7.5 No 6 QVGA 3.75 No 7 QVGA 1.875 No 8 QVGA 1.875 Max 9 QVGA 7.5 Max 9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QQVGA 1.875 Max 11 QVGA 1.875 No 12 QQVGA 1.875 No 13 QQVGA 1.875 No 14 QQVGA 1.875 No 15 QQVGA 1.875 Max 16 QQVGA 1.875 Max 19 QQVGA 1.875		Bits[50]				Zoom
2 VGA 3.75 no 3 VGA 1.875 no 4 QVGA 15 No 5 QVGA 7.5 No 6 QVGA 3.75 No 7 QVGA 1.875 No 8 QVGA 1.875 Max 9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QVGA 1.875 No 13 QVGA 1.875 No 14 QVGA 3.75 No 15 QVGA 1.875 No 14 QVGA 1.875 No 15 QQVGA 1.875 Max 16 QQVGA 1.875 Max 17 QQVGA 3.75 Max 18 QQVGA 1.875 Max 19 QQVGA 1.875			0			no
3 VGA 1.875 no 4 QVGA 15 No 5 QVGA 7.5 No 6 QVGA 3.75 No 7 QVGA 1.875 No 8 QVGA 1.875 Max 9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QQVGA 1.875 No 11 QVGA 1.5 No 12 QQVGA 1.5 No 13 QQVGA 1.5 No 14 QQVGA 3.75 No 15 QQVGA 1.875 No 14 QQVGA 3.75 Max 15 QQVGA 1.875 Mox 16 QQVGA 1.875 Max 17 QQVGA 1.875 Max 19 QQVGA 1.875						no
4 QVGA 15 No 5 QVGA 7.5 No 6 QVGA 3.75 No 7 QVGA 1.875 No 8 QVGA 1.5 Max 9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 1.875 Max 11 QVGA 1.875 Max 12 QQVGA 15 No 13 QQVGA 7.5 No 14 QQVGA 1.875 No 15 QQVGA 1.875 No 14 QQVGA 1.875 No 15 QQVGA 1.875 Max 16 QQVGA 1.875 Max 17 QQVGA 1.875 Max 18 QQVGA 1.875 Max 19 QQVGA 1.875 No 20 Sub-QCIF 15 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>no</td>						no
5 QVGA 7.5 No 6 QVGA 3.75 No 7 QVGA 1.875 No 8 QVGA 15 Max 9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QQVGA 1.875 Max 11 QVGA 1.875 Max 12 QQVGA 1.875 Max 12 QQVGA 1.875 No 13 QQVGA 1.875 No 14 QQVGA 1.875 No 15 QQVGA 1.875 No 16 QQVGA 1.875 Max 16 QQVGA 1.875 Max 17 QQVGA 1.875 Max 18 QQVGA 1.875 Max 19 QQVGA 1.875 No 20 Sub-QCIF						
6 QVGA 3.75 No 7 QVGA 1.875 No 8 QVGA 15 Max 9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QQVGA 15 No 12 QQVGA 7.5 No 14 QQVGA 3.75 No 14 QQVGA 1.875 No 15 QQVGA 1.875 No 15 QQVGA 1.875 No 16 QQVGA 1.875 Max 17 QQVGA 3.75 Max 18 QQVGA 1.875 Max 19 QQVGA 1.875 Max 12 Sub-QCIF 15 No 12 Sub-QCIF 3.75 No 12 Sub-QCIF <						
7 QVGA 1.875 No 8 QVGA 15 Max 9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QQVGA 15 No 12 QQVGA 7.5 No 13 QQVGA 7.5 No 14 QQVGA 3.75 No 15 QQVGA 1.875 No 14 QQVGA 1.875 No 15 QQVGA 1.875 No 16 QQVGA 1.875 Max 16 QQVGA 7.5 Max 17 QQVGA 3.75 Max 18 QQVGA 1.875 Max 19 QQVGA 1.875 No 20 Sub-QCIF 15 No 21 Sub-QCIF 3.75 No 22 Sub-QCIF <					7.5	
8 QVGA 15 Max 9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QQVGA 15 No 13 QQVGA 7.5 No 14 QQVGA 3.75 No 15 QQVGA 1.875 No 14 QQVGA 1.875 No 15 QQVGA 1.875 No 14 QQVGA 3.75 No 15 QQVGA 1.875 No 15 QQVGA 1.875 Max 16 QQVGA 1.875 Max 17 QQVGA 3.75 Max 18 QQVGA 1.875 Max 19 QQVGA 1.875 Max 12 Sub-QCIF 15 No 21 Sub-QCIF 3.75 No 22 Sub-QCIF			6		3.75	No
9 QVGA 7.5 Max 10 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QQVGA 15 No 13 QQVGA 7.5 No 14 QQVGA 3.75 No 14 QQVGA 3.75 No 15 QQVGA 1.875 No 16 QQVGA 15 Max 17 QQVGA 7.5 Max 18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 3.75 No 22 Sub-QCIF 3.75 No			7	QVGA	1.875	No
10 QVGA 3.75 Max 11 QVGA 1.875 Max 12 QQVGA 15 No 13 QQVGA 7.5 No 14 QQVGA 3.75 No 15 QQVGA 3.75 No 14 QQVGA 1.875 No 15 QQVGA 1.875 No 16 QQVGA 15 Max 17 QQVGA 7.5 Max 18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 19 QQVGA 1.875 No 20 Sub-QCIF 15 No 21 Sub-QCIF 3.75 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			8	QVGA	15	Max
11 QVGA 1.875 Max 12 QQVGA 15 No 13 QQVGA 7.5 No 14 QQVGA 3.75 No 15 QQVGA 1.875 No 14 QQVGA 1.875 No 15 QQVGA 1.875 No 16 QQVGA 15 Max 17 QQVGA 7.5 Max 18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			9		7.5	Max
12 QQVGA 15 No 13 QQVGA 7.5 No 14 QQVGA 3.75 No 15 QQVGA 1.875 No 16 QQVGA 15 Max 17 QQVGA 7.5 Max 18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			10	QVGA	3.75	Max
13 QQVGA 7.5 No 14 QQVGA 3.75 No 15 QQVGA 1.875 No 16 QQVGA 15 Max 17 QQVGA 7.5 Max 18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			11	QVGA	1.875	Max
14 QQVGA 3.75 No 15 QQVGA 1.875 No 16 QQVGA 15 Max 17 QQVGA 7.5 Max 18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			12	QQVGA	15	No
15 QQVGA 1.875 No 16 QQVGA 15 Max 17 QQVGA 7.5 Max 18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			13	QQVGA	7.5	No
16 QQVGA 15 Max 17 QQVGA 7.5 Max 18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			14	QQVGA	3.75	No
17 QQVGA 7.5 Max 18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			15	QQVGA	1.875	No
18 QQVGA 3.75 Max 19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			16	QQVGA	15	Max
19 QQVGA 1.875 Max 20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			17	QQVGA	7.5	Max
20 Sub-QCIF 15 No 21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			18	QQVGA	3.75	Max
21 Sub-QCIF 7.5 No 22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			19	QQVGA	1.875	Max
22 Sub-QCIF 3.75 No 23 Sub-QCIF 1.875 No			20	Sub-QCIF	15	No
23 Sub-QCIF 1.875 No			21	Sub-QCIF	7.5	No
			22	Sub-QCIF	3.75	No
24 Sub-QCIF 15 Max			23	Sub-QCIF	1.875	No
			24	Sub-QCIF	15	Max

Philips Semiconductors

Table 14:

	25	Sub-QCIF	7.5	Max
	26	Sub-QCIF	3.75	Max
	27	Sub-QCIF	1.875	Max
	28	CIF	15	No
	29	CIF	7.5	No
	30	CIF	3.75	No
	31	CIF	1.875	No
	32	QCIF	15	No
	33	QCIF	7.5	No
	34	QCIF	3.75	No
	35	QCIF	1.875	No
	36	QCIF	15	Max
	37	QCIF	7.5	Max
	38	QCIF	3.75	Max
	39	QCIF	1.875	Max
	40	QQCIF	15	No
	41	QQCIF	7.5	No
	42	QQCIF	3.75	No
	43	QQCIF	1.875	No
	44	QQCIF	15	Max
	45	QQCIF	7.5	Max
	46	QQCIF	3.75	Max
	47	QQCIF	1.875	Max
	48	QQSIF portrait	15	No
	49	QQSIF portrait	7.5	No
	50	QQSIF portrait	3.75	No
	51	QQSIF portrait	1.875	No
Function	This request defin	es the different fra	ame rate and video	resolutions
Default value	0x40			

Table 15:

Control identifier code	Control	Mnemonic	
0xEF	REQ_SET_AUTO_FRAME_RATE_MODE		
data byte value	Bits	ID	Description
	7		Lowest Frame rate @ 12 MHz input clock
		0	7.5 fps
		1	10 fps
	6		Contour Gain
		0	Leave Contour Gain as defined
		1	Force Contour gain to be set to 0 (at lowest frame) rate
	5		YUV Filter
		0	Disable [12221]/4 YUV filter
		1	Enable [12221]/4 YUV filter (at lowest frame rate)
	4		Matrix
		0	Normal Matrix
		1	Alternate Matrix (at lowest frame rate)
			When this bit is set one four alternate matrices is used when the lowest frame-rate is reached.
			Alternate matrix can be set via bits 57 of request REQ_SET_COLOUR_MODE.
	[30]		Gain Milestone Level
		0x0	When 0x0 the Auto Frame Rate (AFR) function is switched off.
		up to 0xF	When different from 0x0 AFR is ON, and the value represents the Gain Milestone Value.
			When AFR is ON, the bit Low light condition is ignored (bit 7 of request REQ_SET_LUMINANCE_MODE).
			Auto Frame Rate can work only if Auto Exposure Mode has been set to ON (bit 6 of REQ_SET_LUMINANCE_MODE).
Function	Reques	t defines th	e Auto Frame Rate settings
Default value	0x00		

Table 16:

Control identifier code	Control Mne	emonic	
0xDD	REQ_YUV_	RGB_	OUTPUT
data byte value	bits	ID	Description
	7		YUV/ RGB out
		0	RGB
		1	YUV
	[65]		YUV swapping
		00	$U_0Y_0V_0Y_1$
		01	$V_0Y_0U_0Y_1$
		10	$Y_0U_0Y_1V_0$
		11	$Y_0V_0Y_1U_0$
	[43]		RGB format
		00	RGB 444
		01	RGB 555
		10	RGB 565
		11	Raw RGB
	2		YUV MPEG/JPEG (1/2 T UV shift)
		0	no ½ T U/V shift
		1	1⁄2 T U/V shift, REC 601 compliant
	[10]		Data clipping
		00	No clipping
		01	CCIR 601 compliant
			Y[16235]; U[16240]
		1X	YUV[1254]
Function	Defines the	YUV a	nd RGB output format
Default value	0x93		
Table 17:			
Control identifier code	Control Mne		
0xDE	REQ_SYNCHRONISATION		
data byte value	bits	ID	Description

VGA CMOS camera module

OM6802

Table 17:			
	7		SAVEAV codes on/off
		0	Off
		1	On
	6		SAVEAV codes inactive lines
		0	Off
		1	On
	5		XAV-code bit 6
		0	Low
		1	High
	4		XAV-code bit 7
		0	Low
		1	High
	3		Output clock period
		0	Output clock equal to pixel clock. Data qualification in combination with PXQ
		1	Output clock qualifies data on every clock
	2		Inactive level select
		0	00 00 00 00
		1	80 10 80 10
	1		Unused
	0		Output clock polarity
		0	not inverted
		1	inverted
unction	Defines ou		mat and CCIR656 synchronization codes
Default value	0x5C		
Table 18:			
Control identifier code	Control M	nemonic	:
DxDF	REQ_ENTER_FACTORY_MODE		

Table 18:

data byte value	Password (0x6D = factory mode; 0x12 = register access mode)
Function	By default the NORMAL mode is active (only some specific embedded registers can be accessed).
	In FACTORY_MODE, the picture processing is OFF (auto loops are not running), but access to all hardware registers is possible. Note that a reset is needed to leave this debug mode.
	In REGISTER ACCESS_MODE, the picture processing is running (auto loops) and access to all hardware registers is possible. In this case, the auto loops behavior can not be guaranteed due to the fact that the hardware registers can be modified. Note that a reset is needed to leave this debug mode.
Default value	Not applicable

16.2 Luminance Requests

Table 19:

Control identifier code	Control Mnemonic
0xE0	REQ_GET_GAIN_LSB
data byte value	Returns LSB of the Gain value
Function	Reads LSB part of gain value
	When handling this request, the returned value of request REQ_GET_GAIN_MSB, REQ_GET_ITLSB, REQ_GET_IT_MSB are frozen to keep coherent values.
Default value	Not applicable
Table 20:	
Control identifier code	Control Mnemonic
0xE1	REQ_GET_GAIN_MSB
data byte value	returns MSB of the Gain value (as it was last time when requiring REQ_GET_GAIN_LSB).
Function	Reads MSB part of gain value
Default value	Not applicable
Table 21:	
Control identifier code	Control Mnemonic
0xE2	REQ_GET_IT_LSB
data byte value	Returns LSB part of the Integration Time value (as it was last time when requiring REQ_GET_GAIN_LSB) in number of lines
Function	Reads LSB part of integration time value
Default value	Not applicable

Table 22:

Control identifier code	Control Mnemonic
0xE3	REQ_GET_IT_MSB
data byte value	Returns MSB part of the Integration Time value in number of lines (as it was last time when requiring REQ_GET_GAIN_LSB).
Function	Reads MSB part of integration time value
Default value	Not applicable

Table 23:

Control identifier code	Control Mnemonic			
0xE4	REQ_PRESET_SHUTTER			
data byte value	0x00 0xFF			
Function	When AE is switched OFF, the value represents the integration time used			
Default value	Not applicable because AE is ON by default			

Table 24:

Control identifier code	Control Mnemonic
0xE5	REQ_PRESET_AGC
data byte value	0x000xFF
Function	When AE is switched OFF, the value represents the gain used
Default value	Not applicable because AE ON by default

Table 25:

Control identifier code	Control Mnemonic			
0xE6	REQ_PRESET_BRIGHTNESS			
data byte value	0x80 0x7F (-128 127)			
Function	Controls the video brightness level			
Default value	0x00			

Table 26:

Control identifier code	Control Mnemonic			
0xE7	REQ_PRESET_CONTRAST			
Data byte value	0x80 0x7F (-128 127)			
Function	Controls the video contrast level			
Default value	0x00			

Table 27:

Control identifier code	Control Mnemonic			
0xE8	REQ_PRESET_GAMMA			
Data byte value	0x00 0x3F			
	0xEE for OFF			
Function	Controls the gamma curve applied on the video signal			
Default value	0x31			

Table 28:

Control identifier code	Control Mnemonic		
0xE9	REQ_SE	T_LUMINA	NCE_MODE
data byte value	Bits	ID	Description
	7		Low light condition
		0	OFF
		1	ON
			When Auto Frame Rate is ON, this mode is ignored
	6		Auto Exposure mode
		0	OFF
		1	ON
	54		Flicker less mode
		00	OFF
		01	50 Hz
		10	60 Hz
		11	unused
	32		Backlight compensation
		00	OFF
		01	ON
		11	AUTO

1		Auto NGC Mode
	0	OFF
	1	ON
		When ON, the noise gain control function will improve the picture quality under low light conditions.
0		Auto Contour Mode
	0	OFF
	1	ON
		When ON, the contour gain is decreased under low light conditions. The default contour gain can be set via request REQ_PRESET_AUTO_CONTOUR.
		Request is only functional when NGC mode is ON.
0x5F		
	0	0 1 0 0 1

Table 29:

Default value	0x38			
Function	Defines the default value for the contour gain			
data byte value	0x00 0x7F (register range)			
0xEA	REQ_PRESET_AUTO_CONTOUR			
Control identifier code	Control Mnemonic			

16.3 Chrominance Requests

Table 30:			
Control identifier code			Control Mnemonic
0xF0			REQ_SET_WB_MODE_AE_SPEED
data byte value	Bits	ID	Description
	74	0x0	Auto exposure speed
		up to	from 0x0 (low) to 0xF (fast)
		0xF	The four bits control the Auto Exposure convergence speed.

OM6802

Table 30:			
	30		White balance mode
		0x0	incandescent
		0x1	daylight
		0x2	fluorescent
		0x3	freeze
		0x4	auto RGB
		0x5	auto YUV
			The white balance request defines the control of the white balance mode: incandescent, daylight and fluorescent modes are predefined values for R & B gains. Freeze mode freezes the current status of the R & B gains. The auto mode controls the R and B gains in an automatic way.

Function	Controls the Auto Exposure speed and White Balance mode
Default value	0x74

Table 31:

Control identifier code	Control Mnemonic		
0xF1	REQ_SET_COLOUR_MODE		
data byte value	Bits	ID	Description
	7 6		Alternate matrix
			Selects one of 4 available alternate matrices (the selected matrix is used when bit4 of request REQ_SET_AUTO_FRAME_RATE_MODE (0xEF) is set to 1.
	5 2		unused
	1 0		Color mode
		00	Black & white
		01	SEPHIA mode
		1x	Color mode
Function	Selectior color mo		nate matrix used by the AFR function. Selection of the
Default value	0x02		

Table 32:

Default value	0x00
Function	Controls the color saturation level by modifying the U and V gains (no saturation means a black and white picture)
	Hex: 0x9C 0xFF 0x00 0x01 0x64
data byte value	Decimal: -100%-1% 0% 1% 100%
0xF2	REQ_PRESET_SATURATION
Control identifier code	Control Mnemonic

Table 33:

Control identifier code	Control Mnemonic
0xF3	REQ_PRESET_MANUAL_RED_GAIN
data byte value	0x00 0xFF
Function	Preset value for the white balance red gain in case the white balance FREEZE mode selected
Default value	0x80

Table 34:

Control identifier code	Control Mnemonic
0xF4	REQ_PRESET_MANUAL_BLUE_GAIN
data byte value	0x00 0xFF
Function	Preset value for white balance blue gain in case the white balance FREEZE mode is selected
Default value	0x40

16.4 General purpose requests

Table 35:	
Control identifier code	Control Mnemonic
0xEB	REQ_WRITE_CLKLINL
data byte value	0x00 0xFF
Function	LSB part to define the number of clocks per line (HEX value)
	Also the MSB part has to be send before the value is used (request 0xEC).
Default value	0x20 (=LSB of 800 lines)

Table 36:

Control identifier code	Control Mnemonic
0xEC	REQ_WRITE_CLKLINH
data byte value	0x00 0x03
Function	MSB part to define the number of clocks per line (HEX value)
Default value	0x03 (= MSB of 800 lines)

Table 37:

Control identifier code	Control Mnemonic
0xED	REQ_WRITE_LINFIL
data byte value	0x00 0xFF
Function	LSB part to define the number of lines per field (HEX value)
	Also the MSB part has to be send before the value is used (request 0xEE).
Default value	0xF4 (= LSB of 500 lines)

Table 38:

Control identifier code	Control Mnemonic
0xEE	REQ_WRITE_LINFIH
data byte value	0x00 0x03
Function	MSB part to define the number of lines per field (HEX value)
Default value	0x01 (= MSB of 500 lines)

Table 39:

Control identifier code	Control Mnemonic
0xF5	REQ_GET_VERSION
data byte value	Returns the embedded software version
Function	Returns the embedded software version (0x05 for ES5)
Default value	Not applicable

Table 40:

Control identifier code	Control Mnemonic
0xF6	REQ_SET_POWER_MODE

Table 40:

data byte value	0x11 for FULL_POWER 0xEE for POWER_SAVE
Function	To select between FULL_POWER or POWER_SAVE mode
Default value	Not applicable

Table 41:

Control identifier code	Control Mnemonic
0xF7	REQ_STOP_FRAME
data byte value	0x11 to enable video 0xEE to stop video
Function	This request is used to stop or enable the video output
Default value	Not applicable

Table 42:

Default value	Not applicable
Function	This requests sends back the status of the video streaming: stopped or running.
data byte value	0x00 if Frame is not stopped 0x01 if Frame is Stopped
0xF8	REQ_GET_FRAME_IS_STOPPED
Control identifier code	Control Mnemonic

Table 43:

Control identifier code	Control Mnemonic
0xF9	REQ_SET_INPUT_FREQUENCY_LSB
data byte value	LSB of (Frequency in kHZ * 2)
Function	In case an input clock frequency different from the default frequency (12MHz) is used, the exact input clock frequency should be specified via this request.
	This request represents the LSB part of the applied input clock. The MSB part in request FA has to be specified as well to validate the adapted input frequency (send first LSB-part then MSB-part!)
Default value	0xC0 (= LSB of 2 x 12000 kHz)

Table 44:

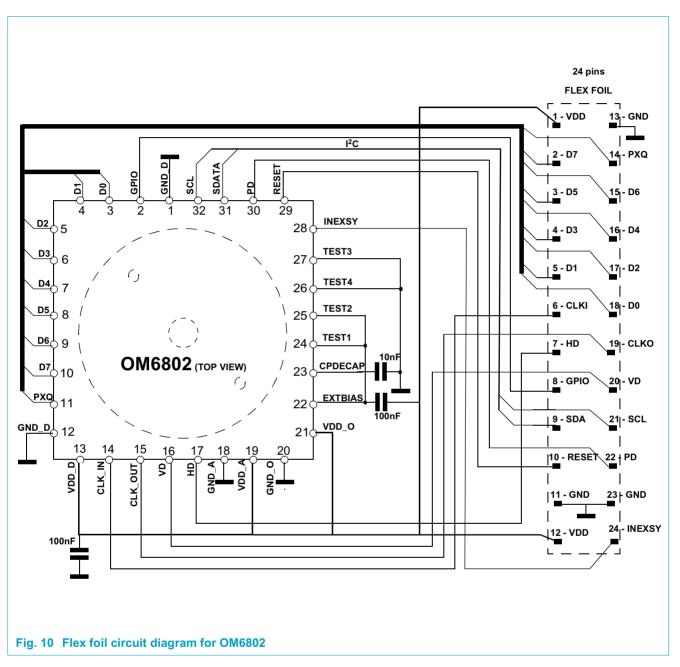
Control identifier code	Control Mnemonic
0xFA	REQ_SET_FREQUENCY_MSB

Table 44:

data byte value	MSB of (Frequency in kHZ * 2)
Function	In case an input clock frequency different from the default frequency (12MHz) is used, the exact input clock frequency must be specified via this request.
	This request represents the MSB part of the applied input clock. The LSB part in request F9 has to be programmed first to guarantee proper operation.
Default value	0x5D (= MSB of 2 x 12000 kHz)

Table 45:

Default value	0xEE
Function	
data byte value	0xEE
0xFB	Not used
Control identifier code	Control Mnemonic

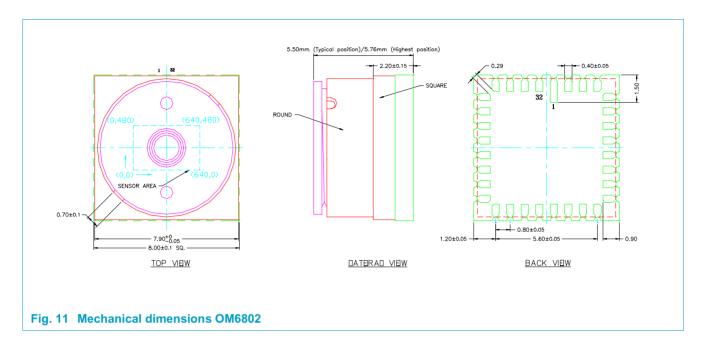

Table 46:

Control identifier code	Control Mnemonic
0xFE	REQ_SET_MAX_AGC_VALUE
data byte value	range: [0x000x78]
	When 0x00 the default ROM value is used.
	Values different from 0x00 represent a maximum gain value used by the Auto Exposure algorithm.
Function	Controls the maximum gain used by the AE algorithm.
Default value	0x5B

Table 47:

Control identifier code	Control Mnemonic
0xFF	REQ_IDENT
data byte value	Returns 0x17 as OM6802 module identification
Function	Returns the OM6802 identification byte.
Default value	Not applicable

17. Application information



Note:

The flexfoil configuration (layout, size, shape) can be customized. Also the type of connector can be subject to customization.

VGA CMOS camera module

18. Mechanics

19. Handling information

The CMOS module is a device which can be destroyed by ESD (Electro static discharge). Therefore the device should be handled with care, using ESD protection and in an ESD safe environment.

Due the fact the module has a highly sensitive optical lens, the module is limited in the applicable temperature range.

In addition to this it should be avoided to contaminate the lens with dirt and or with solvents, which both can limit the optical functions of the lens.

If these boundaries are considered, the optical parts do not have to be cleaned due the fact the module is completely functional tested before shipment to the customer.

20. Soldering

The CMOS module is not to be used for reflow soldering due the fact a highly vulnerable lens is present in the lensbarrel. It should be avoided at all times that the lens temperature is elevated to temperatures above the storage temperature!

So the preferred module assembly on a printed circuit board is the use of an appropriate flex foil connector.

21. Marking

Marking of the product is at the bottom side of the base module, or of the stiffener of the flexfoil, applied by ink.

Marking used (3 lines, preceded by Philips logo):

Line A:	Туре
Line B:	Diffusion lot number
Line C:	Manufact. Code + mask version (acc. SNW-SZ-602) + status (acc. SNW-SQ-002)

Actual marking content:

Line A:	OM6802
Line B:	<diffusion code="" from="" received="" wafer=""></diffusion>
Line C:	TWN YY ww M Q

Legend:

P: product version

YY: Year number (03 = 2003) ww: week number M: maskset Q: Qualification state (X = Not qualified, Y =Partly qualified, blank = fully qualified)

22. Revision history

Table	Table 48: Revision history		
Rev	Date	CPCN	Description
0.1	021006	-	Draft version for internal review.
			The format of this specification complies with Philips Semiconductors new presentation and information standard.
0.2	021010	-	Updated version for CQS milestone
1.0	021202		Major content change (draft)
1.1	201202		Minor changes after internal review
2.0	260503		Major content change (draft)
2.1	040603		Change table 1
			Maximum Input clock frequency changed to t.b.d.